Education, Science, Technology, Innovation and Life
Open Access
Sign In

Load Monitoring Based on the Auxiliary Particle Filter Algorithm

Download as PDF

DOI: 10.23977/isspj.2016.11003 | Downloads: 44 | Views: 6113

Author(s)

Wang Shen 1, Wei Zhi-qiang 1, Yin Bo 1

Affiliation(s)

1 Ocean University of China, No.238, Songling Road, Laoshan District, Qingdao City, Shandong Province, China

Corresponding Author

Yin Bo

ABSTRACT

This paper introduces family load monitoring based on auxiliary particle filter algorithm. It mainly uses a set of random samples with relevant weights to estimate the posterior probability density p(xt|Yt). First of all, the model of household electrical appliances is established in this paper, then using the particle filter algorithm to estimate the state. It mainly consists of two parts: including Bayesian estimation and auxiliary particle filter-based load monitoring. Finally, the data collected by the sensor is simulated on the MATLAB platform, and the simulation results are obtained by using the evolutionary auxiliary particle filter algorithm.

KEYWORDS

Non-intrusive load monitoring, Household and appliance model, Particle filter, Bayesian estimation, Auxiliary particle filter, MATLAB simulation

CITE THIS PAPER

Shen, W. , Zhiqiang, W. and Bo, Y. (2016) Load Monitoring Based on the Auxiliary Particle Filter Algorithm.Information Systems and Signal Processing Journal (2016) 1: 12-18.

REFERENCES

[1] Hart G W.Nonintrusive appliance load monitoring[J].Proceedings of the IEEE,1992,80(12):1870-1891.
[2] Froehlich J,Larson E,Gupta S,et al.Disaggregated end-use energy sensing for the smart grid[J].IEEE Pervasive Computing,2010,10(1):28-39.
[3] Ridi A,Gisler C,Hennebert J.A Survey on Intrusive Load Monitoring for Appliance Recognition[C]//Pattern Recognition(ICPR),2014 22nd International Conference on.Stockholm:IEEE,2014:3702-3707.
[4] Gordon N,Salmond D.Novel approach to non-linear and no n-Gaussian Bayesian state estimation[J].Proc of Institute Electric Engineering,1993,140(2):107-113.
[5] F. Dellaert, D. Fox, W. Burgd, and S. Thrun. Monte carlo localization for mobile robots. In proc. IEEE International Conference on Robotics and Automation, Detroit, Mechigan, May, 1999.
[6] M. K. Pitt and N. Shephard. Filtering via simulation: Auxiliary particle filters. Journal of American Statistical Association,94(446): 590-599, June 1999.
[7] A. Doucet, N. de freitas, and N. Gordon. Sequential Monte Carlo methods in practice, Springer-verlag,2001.
[8] M. Isard and A. Blake. Condesation-conditional density propagation for visual tracking. Int. j. Comp. Vision, vol.29, no.1, pp:5-28, 1998.
[9] Handschin J E.Monte Carlo techniques for prediction and filtering of non-linear stochastic processes [J] .Automatica, 1970, 6(3) : 555-563.
[10] L. Rabiner, “A tutorial on hidden Markov models and selected applications in speech recognition,” Proc. IEEE, vol. 77, no. 2, pp. 257–286,Feb. 1989. 
[11] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for online nonlinearn-Gaussian Bayesian tracking,” IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174–188,Feb. 2002.

Downloads: 949
Visits: 81005

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.