Education, Science, Technology, Innovation and Life
Open Access
Sign In

Network Pharmacology Analysis on the Mechanism of Beimu Gualou Formula in Treating Chronic Obstructive Pulmonary Disease

Download as PDF

DOI: 10.23977/medcm.2023.050915 | Downloads: 17 | Views: 290

Author(s)

Fuwenxuan Ding 1

Affiliation(s)

1 Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, 999077, China

Corresponding Author

Fuwenxuan Ding

ABSTRACT

Beimu Gualou Formula (BMGLF) is a traditional Chinese medicine (TCM) formula with the potential to treat chronic obstructive pulmonary disease (COPD). However, the main components and potential mechanisms of BMGLF remain unclear. This study aimed to explore the active ingredients and potential action mechanisms of BMGLF for treating COPD by utilizing network pharmacological analysis. In this study, The TCMSP database was searched for the medicinal chemistry of BMGLF to screen its active ingredients and action targets; the GeneCards database was searched to obtain COPD targets; drug targets and disease targets were intersected and a PPI network was constructed using the String database and Cytoscape 3.9.1 software to obtain key targets.; GO enrichment analysis and KEGG pathway analysis of the intersected targets were performed using David database. A total of 47 active ingredients of BMGLF were found, among which the core components were luteolin, naringenin, beta-sitosterol, and acacetin; 112 intersecting targets of BMGLF for COPD treatment were obtained, among which the core targets were TP53, TNF, CASP3, AKT1, and ESR1, etc. GO analysis yielded 328 entries, and KEGG analysis yielded 151 signals, involving Pathways in cancer, PI3K-Akt signaling pathway, Lipid and atherosclerosis, and so on. This study revealed that BMGLF may act synergistically via multi-components, multi-targets, and multi-pathways for COPD treatment, providing a theoretical basis for further mechanistic studies.

KEYWORDS

Beimu Gualou Formula, Chronic Obstructive Pulmonary Disease, COPD, Network pharmacology, Action Mechanisms

CITE THIS PAPER

Fuwenxuan Ding, Network Pharmacology Analysis on the Mechanism of Beimu Gualou Formula in Treating Chronic Obstructive Pulmonary Disease. MEDS Chinese Medicine (2023) Vol. 5: 118-127. DOI: http://dx.doi.org/10.23977/medcm.2023.050915.

REFERENCES

[1] Karakurt P., and Ünsal A. Fatigue, anxiety and depression levels, activities of daily living of patients with chronic obstructive pulmonary disease. International journal of nursing practice. 2013, 19(2), 221–231.
[2] Jarhyan P., Hutchinson A., Khaw, D., Prabhakaran, D., and Mohan, S.  Prevalence of chronic obstructive pulmonary disease and chronic bronchitis in eight countries: a systematic review and meta-analysis. Bulletin of the World Health Organization.2022, 100(3), 216–230.
[3] Diamant Z., Brusselle G., and Russell, R.E. Toward effective prescription of inhaled corticosteroids in chronic airway disease. International journal of chronic obstructive pulmonary disease. 2018, 13, 3419–3424.
[4] Ni H., Moe S., Soe Z., Myint K.T., and Viswanathan K.N.  Combined aclidinium bromide and long-acting beta2-agonist for chronic obstructive pulmonary disease (COPD). The Cochrane database of systematic reviews.2018, 12(12), CD011594.
[5] Li B., Xu X., Wang X., Yu H., Li X., Tao W., Wang Y., and Yang L. A systems biology approach to understanding the mechanisms of action of chinese herbs for treatment of cardiovascular disease. International journal of molecular sciences.2012, 13(10), 13501–13520.
[6] Fang J., Wang L., Wu T., Yang C., Gao L., Cai H., Liu J., Fang S., Chen Y., Tan W., and Wang Q.  Network pharmacology-based study on the mechanism of action for herbal medicines in Alzheimer treatment. Journal of ethnopharmacology.2017, 196, 281–292.
[7] Ha M.T., Phan T.N., Kim J.A., Oh W.K., Lee J.H., Woo M.H., and Min B.S. Trichosanhemiketal A and B: Two 13,14-seco-13,14-epoxyporiferastanes from the root of Trichosanthes kirilowii Maxim. Bioorganic chemistry.2019, 83, 105–110.
[8] Lee H.Y., Lee G.H., Kim H.K., and Chae H.J.  Platycodi Radix and its active compounds ameliorate against house dust mite-induced allergic airway inflammation and ER stress and ROS by enhancing anti-oxidation. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association.2019, 123, 412–423.
[9] Wang D., Du Q., Li H., and Wang S. The Isosteroid Alkaloid Imperialine from Bulbs of Fritillaria cirrhosa Mitigates Pulmonary Functional and Structural Impairment and Suppresses Inflammatory Response in a COPD-Like Rat Model. Mediators of inflammation, 2016, 4192483.
[10] Wu K., Mo C., Xiao H., Jiang Y., Ye B., and Wang S. Imperialine and Verticinone from Bulbs of Fritillaria wabuensis Inhibit Pro-inflammatory Mediators in LPS-stimulated RAW 264.7 Macrophages. Planta medica.2015, 81(10), 821–829.
[11] Wen D., Wang J., Yan H., Chen J., Xia K., Liu J., and Zhang A.  Effect of Radix Trichosanthis and Trichosanthin on Hepatitis B Virus in HepG2.2.15 Cells. Journal of nanoscience and nanotechnology.2015, 15(3), 2094–2098.
[12] Wang Y.Z., Zhang J., Zhao Y.L., Li T., Shen T., Li J.Q., Li W.Y., and Liu H.G. Mycology, cultivation, traditional uses, phytochemistry and pharmacology of Wolfiporia cocos (Schwein.) Ryvarden et Gilb: a review. Journal of ethnopharmacology.2013, 147(2), 265–276.
[13] Yeum H.S., Lee Y.C., Kim S.H., Roh S.S., Lee J.C., and Seo Y.B. Fritillaria cirrhosa, Anemarrhena asphodeloides, Lee-Mo-Tang and cyclosporine a inhibit ovalbumin-induced eosinophil accumulation and Th2-mediated bronchial hyperresponsiveness in a murine model of asthma. Basic & clinical pharmacology & toxicology.2007, 100(3), 205–213.
[14] Cui M.C., Chen S.J., Wang H.H., Li Z.H., Chen H.J., Chen Y., Zhou H.B., Li X., and Chen J.W. Metabolic profiling investigation of Fritillaria thunbergii Miq. by gas chromatography-mass spectrometry. Journal of food and drug analysis.2018, 26(1), 337–347. https://doi.org/10.1016/j.jfda.2016.10.003
[15] Yu X., Tang L., Wu H., Zhang X., Luo H., Guo R., Xu M., Yang H., Fan J., Wang Z., and Su R.  Trichosanthis Fructus: botany, traditional uses, phytochemistry and pharmacology. Journal of ethnopharmacology.2018, 224, 177–194.
[16] Ru J., Li P., Wang J., Zhou W., Li B., Huang C., Li P., Guo Z., Tao W., Yang Y., Xu X., Li Y., Wang Y., and Yang L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. Journal of cheminformatics.2014, 6, 13.
[17] Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P., Jensen L.J., and Mering C.V. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic acids research.2017, 47(D1), D607–D613.
[18] Doncheva N.T., Morris J.H., Gorodkin J., and Jensen L.J. Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. Journal of proteome research.2019, 18(2), 623–632.
[19] Safran M., Dalah I., Alexander J., Rosen N., Iny Stein T., Shmoish M., Nativ N., Bahir I., Doniger T., Krug H., Sirota-Madi A., Olender T., Golan Y., Stelzer G., Harel A., and Lancet D. GeneCards Version 3: the human gene integrator. Database : the journal of biological databases and curation. 2010, baq020.
[20] Li G.M., Zhang C.L., Rui R.P., Sun B., and Guo W. Bioinformatics analysis of common differential genes of coronary artery disease and ischemic cardiomyopathy. European review for medical and pharmacological sciences.2018, 22(11), 3553–3569.
[21] Kanehisa M., Sato Y., Furumichi M., Morishima K., and Tanabe M.  New approach for understanding genome variations in KEGG. Nucleic acids research.2019, 47(D1), D590–D595.
[22] Jang T.Y., Jung A.Y., Kyung T.S., Kim D.Y., Hwang J.H., and Kim Y.H.  Anti-allergic effect of luteolin in mice with allergic asthma and rhinitis. Central-European journal of immunology.2017, 42(1), 24–29.
[23] Li M., Wang H., Lu Y., and Cai J. Luteolin suppresses inflammation and oxidative stress in chronic obstructive pulmonary disease through inhibition of the NOX4-mediated NF-κB signaling pathway. Immunity, inflammation and disease.2023, 11(4), e820.
[24] Li Q., Wang Y., Zhang L., Chen L., Du Y., Ye T., and Shi X. Naringenin exerts anti-angiogenic effects in human endothelial cells: Involvement of ERRα/VEGF/KDR signaling pathway. Fitoterapia.2016, 111, 78–86.
[25] Jasemi S.V., Khazaei H., Fakhri S., Mohammadi-Noori E., and Farzaei M.H.  Naringenin Improves Ovalbumin-Induced Allergic Asthma in Rats through Antioxidant and Anti-Inflammatory Effects. Evidence-based complementary and alternative medicine : eCAM. 2022, 9110798.
[26] Liu J., Yao J., and Zhang J. Naringenin attenuates inflammation in chronic obstructive pulmonary disease in cigarette smoke induced mouse model and involves suppression of NF-κB. Journal of microbiology and biotechnology.2018, 10.4014/jmb.1810.10061. Advance online publication.
[27] Valerio M., and Awad A.B.  β-Sitosterol down-regulates some pro-inflammatory signal transduction pathways by increasing the activity of tyrosine phosphatase SHP-1 in J774A.1 murine macrophages. International immunopharmacology. 2011, 11(8), 1012–1017.
[28] Sun L.C., Zhang H.B., Gu C.D., Guo S.D., Li G., Lian R., Yao Y., and Zhang G.Q. Protective effect of acacetin on sepsis-induced acute lung injury via its anti-inflammatory and antioxidative activity. Archives of pharmacal research.2018, 41(12), 1199–1210.
[29] Wang D.C., Shi L., Zhu Z., Gao D., and Zhang Y. Genomic mechanisms of transformation from chronic obstructive pulmonary disease to lung cancer. Seminars in cancer biology.2017, 42, 52–59.
[30] Puliyappadamba V.T., Cheriyan V.T., Thulasidasan A.K., Bava S.V., Vinod B.S., Prabhu P.R., Varghese R., Bevin A., Venugopal S., and Anto R.J. Nicotine-induced survival signaling in lung cancer cells is dependent on their p53 status while its down-regulation by curcumin is independent. Molecular cancer.2010, 9, 220.
[31] Shi C., and Zhao H. Association between Tumor Necrosis Factor-308 G/A Polymorphism and Chronic Obstructive Pulmonary Disease Risk in Chinese Population: Evidence from a Meta-Analysis. Clinical laboratory. 2019, 65(10), 10.7754/Clin.Lab.2019.190313.
[32] Malaviya R., Laskin J.D., and Laskin D.L. Anti-TNFα therapy in inflammatory lung diseases. Pharmacology & therapeutics.2017, 180, 90–98.
[33] Chiappara G., Gjomarkaj M., Sciarrino S., Vitulo P., Pipitone L., and Pace E.  Altered expression of p21, activated caspase-3, and PCNA in bronchiolar epithelium of smokers with and without chronic obstructive pulmonary disease. Experimental lung research.2014, 40(7), 343–353.
[34] Cui J., Zhang, F., Wang Y., Liu J., Ming X., Hou J., Lv B., Fang S., and Yu B.  Macrophage migration inhibitory factor promotes cardiac stem cell proliferation and endothelial differentiation through the activation of the PI3K/Akt/mTOR and AMPK pathways. International journal of molecular medicine.2016, 37(5), 1299–1309.
[35] Xia Q.D., Xun Y., Lu J.L., Lu Y.C., Yang Y.Y., Zhou P., Hu J., Li C., and Wang S.G.Network pharmacology and molecular docking analyses on Lianhua Qingwen capsule indicate Akt1 is a potential target to treat and prevent COVID-19. Cell proliferation.2020, 53(12), e12949.
[36] Konings G.F.J., Reynaert N.L., Delvoux B., Verhamme F.M., Bracke K.R., Brusselle G.G., Romano A., and Vernooy J.H.J. Increased levels of enzymes involved in local estradiol synthesis in chronic obstructive pulmonary disease. Molecular and cellular endocrinology.2017, 443, 23–31.
[37] Suga Y., Miyajima K., Oikawa T., Maeda J., Usuda J., Kajiwara N., Ohira T., Uchida O., Tsuboi M., Hirano T., Kato H., and Ikeda N. Quantitative p16 and ESR1 methylation in the peripheral blood of patients with non-small cell lung cancer. Oncology reports.2008, 20(5), 1137–1142.
[38] Parris B.A., O'Farrell H.E., Fong K.M., and Yang I.A.  Chronic obstructive pulmonary disease (COPD) and lung cancer: common pathways for pathogenesis. Journal of thoracic disease.2019, 11(Suppl 17), S2155–S2172.
[39] Xie H., Zhang C., Liu D., Yang Q., Tang L., Wang T., Tian H., Lu L., Xu J.Y., Gao F., Wang J., Jin C., Li W., Xu G., Xu G.T., and Zhang J.  Erythropoietin protects the inner blood-retinal barrier by inhibiting microglia phagocytosis via Src/Akt/cofilin signalling in experimental diabetic retinopathy. Diabetologia.2021, 64(1), 211–225.
[40] Zhang X.L., and Liu Z.  MiR-19a inhibitor improves diabetic retinopathy in rats through PTEN/Akt/P-Akt signaling pathway. Journal of biological regulators and homeostatic agents.2020, 34(2), 509–515.
[41] Sun X., Chen L., and He Z. PI3K/Akt-Nrf2 and Anti-Inflammation Effect of Macrolides in Chronic Obstructive Pulmonary Disease. Current drug metabolism.2019, 20(4), 301–304.
[42] Choudhury G., Rabinovich R., and MacNee W.  Comorbidities and systemic effects of chronic obstructive pulmonary disease. Clinics in chest medicine.2014, 35(1), 101–130.
[43] Chen W., Thomas J., Sadatsafavi M., and FitzGerald J.M. Risk of cardiovascular comorbidity in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. The Lancet. Respiratory medicine.2015, 3(8), 631–639.
[44] Celli B.R., Locantore N., Yates J., Tal-Singer R., Miller B.E., Bakke P., Calverley P., Coxson H., Crim C., Edwards L.D., Lomas D.A., Duvoix A., MacNee W., Rennard S., Silverman E., Vestbo J., Wouters E., Agustí A., and ECLIPSE Investigators  Inflammatory biomarkers improve clinical prediction of mortality in chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine.2012, 185(10), 1065–1072.
[45] Chen R., Lin L., Tian J.W., Zeng B., Zhang L., Chen X., and Yan H.Y.  Predictors of dynamic hyperinflation during the 6-minute walk test in stable chronic obstructive pulmonary disease patients. Journal of thoracic disease.2015, 7(7), 1142–1150.
[46] Austin V., Crack P.J., Bozinovski S., Miller A.A., and Vlahos R.  COPD and stroke: are systemic inflammation and oxidative stress the missing links? Clinical science (London, England: 1979).2016, 130(13), 1039–1050.
[47] Zhang B.Y., Jin Z., and Zhao Z.  Long intergenic noncoding RNA 00305 sponges miR-136 to regulate the hypoxia induced apoptosis of vascular endothelial cells. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2017, 94, 238–243.
[48] Khedoe P.P., Rensen P.C., Berbée J.F., and Hiemstra P.S.  Murine models of cardiovascular comorbidity in chronic obstructive pulmonary disease. American journal of physiology. Lung cellular and molecular physiology.2016, 310(11), L1011–L1027.

Downloads: 4232
Visits: 167663

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.