Education, Science, Technology, Innovation and Life
Open Access
Sign In

Research Progress of Non-Coding RNA in Amyotrophic Lateral Sclerosis

Download as PDF

DOI: 10.23977/medsc.2023.040519 | Downloads: 13 | Views: 361

Author(s)

Yuanrong Lu 1, Hua Li 2, Jie Guo 1, Junyang Liu 2, Qiang Wang 2,3

Affiliation(s)

1 The Second Clinical Medicine College, Shaanxi University of Chinese Medicine, Xianyang, China
2 College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
3 Shaanxi Provincial Key Laboratory of Acupuncture and Drug Combination, Xianyang, China

Corresponding Author

Qiang Wang

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by motor neuron degeneration. It begins to show some muscle abnormalities, and eventually it is usually due to respiratory muscle atrophy leading to ventilatory dysfunction death. The prevalence of male is higher than that of female, which is divided into sporadic and familial types. At present, only two drugs can be used for treatment. Therefore, it is urgent to find biomarkers that can diagnose ALS or predict the progression of ALS. Studies have shown that miRNA in non-coding RNA as biomarkers can reflect disease progression or disease severity or diagnosis. This review aims to describe the detection of non-coding RNAs in blood or cerebrospinal. 

KEYWORDS

Amyotrophic lateral sclerosis, non-coding RNA, biomarkers, research progress

CITE THIS PAPER

Yuanrong Lu, Hua Li, Jie Guo, Junyang Liu, Qiang Wang, Research Progress of Non-Coding RNA in Amyotrophic Lateral Sclerosis. MEDS Clinical Medicine (2023) Vol. 4: 143-147. DOI: http://dx.doi.org/10.23977/medsc.2023.040519.

REFERENCES

[1] Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, Shaw PJ, Simmons Z and van den Berg LH. Amyotrophic lateral sclerosis. Nature Reviews. Disease Primers 2017; 3: 17085.
[2] Wolfson C, Gauvin DE, Ishola F and Oskoui M. Global Prevalence and Incidence of Amyotrophic Lateral Sclerosis: A Systematic Review. Neurology 2023; 101: e613-e623.
[3] Vasta R, Moglia C, Manera U, Canosa A, Grassano M, Palumbo F, Cugnasco P, De Marchi F, Mazzini L, Calvo A and ChiÒ A. What is amyotrophic lateral sclerosis prevalence? Amyotrophic Lateral Sclerosis & Frontotemporal Degeneration 2022; 23: 203-208.
[4] Alberini CM. IGF2 in memory, neurodevelopmental disorders, and neurodegenerative diseases. Trends In Neurosciences 2023; 46: 488-502.
[5] Zarei S, Carr K, Reiley L, Diaz K, Guerra O, Altamirano PF, Pagani W, Lodin D, Orozco G and Chinea A. A comprehensive review of amyotrophic lateral sclerosis. Surgical Neurology International 2015; 6: 171.
[6] Jaiswal MK. Riluzole and edaravone: A tale of two amyotrophic lateral sclerosis drugs. Medicinal Research Reviews 2019; 39: 733-748.
[7] Xu X, Shen D, Gao Y, Zhou Q, Ni Y, Meng H, Shi H, Le W, Chen S and Chen S. A perspective on therapies for amyotrophic lateral sclerosis: can disease progression be curbed? Translational Neurodegeneration 2021; 10: 29.
[8] Taga A and Maragakis NJ. Current and emerging ALS biomarkers: utility and potential in clinical trials. Expert Review of Neurotherapeutics 2018; 18: 871-886.
[9] Bagyinszky E, Hulme J and An SSA. Studies of Genetic and Proteomic Risk Factors of Amyotrophic Lateral Sclerosis Inspire Biomarker Development and Gene Therapy. Cells 2023; 12
[10] Taft RJ, Pang KC, Mercer TR, Dinger M and Mattick JS. Non-coding RNAs: regulators of disease. The Journal of Pathology 2010; 220: 126-139.
[11] Skipper M. Genomics: users' guide to the human genome. Nature Reviews. Genetics 2012; 13: 678.
[12] Moore JE, Purcaro MJ, Pratt HE, Epstein CB, Shoresh N, Adrian J, Kawli T, Davis CA, Dobin A, Kaul R, Halow J, Van Nostrand EL, Freese P, Gorkin DU, Shen Y, He Y, Mackiewicz M, Pauli-Behn F, Williams BA, Mortazavi A, Keller CA, Zhang X-O, Elhajjajy SI, Huey J, Dickel DE, Snetkova V, Wei X, Wang X, Rivera-Mulia JC, Rozowsky J, Zhang J, Chhetri SB, Zhang J, Victorsen A, White KP, Visel A, Yeo GW, Burge CB, Lécuyer E, Gilbert DM, Dekker J, Rinn J, Mendenhall EM, Ecker JR, Kellis M, Klein RJ, Noble WS, Kundaje A, Guigó R, Farnham PJ, Cherry JM, Myers RM, Ren B, Graveley BR, Gerstein MB, Pennacchio LA, Snyder MP, Bernstein BE, Wold B, Hardison RC, Gingeras TR, Stamatoyannopoulos JA and Weng Z. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 2020; 583: 699-710.
[13] Vezza T, de Marañón AM, Canet F, Díaz-Pozo P, Marti M, D'Ocon P, Apostolova N, Rocha M and Víctor VM. MicroRNAs and Oxidative Stress: An Intriguing Crosstalk to Be Exploited in the Management of Type 2 Diabetes. Antioxidants (Basel, Switzerland) 2021; 10
[14] Joilin G, Gray E, Thompson AG, Bobeva Y, Talbot K, Weishaupt J, Ludolph A, Malaspina A, Leigh PN, Newbury SF, Turner MR and Hafezparast M. Identification of a potential non-coding RNA biomarker signature for amyotrophic lateral sclerosis. Brain Communications 2020; 2: fcaa053.
[15] Matamala JM, Arias-Carrasco R, Sanchez C, Uhrig M, Bargsted L, Matus S, Maracaja-Coutinho V, Abarzua S, van Zundert B, Verdugo R, Manque P and Hetz C. Genome-wide circulating microRNA expression profiling reveals potential biomarkers for amyotrophic lateral sclerosis. Neurobiology of Aging 2018; 64: 123-138.
[16] Dufourd T, Robil N, Mallet D, Carcenac C, Boulet S, Brishoual S, Rabois E, Houeto J-L, de la Grange P and Carnicella S. Plasma or serum? A qualitative study on rodents and humans using high-throughput microRNA sequencing for circulating biomarkers. Biology Methods & Protocols 2019; 4: bpz006.
[17] Wong RKY, MacMahon M, Woodside JV and Simpson DA. A comparison of RNA extraction and sequencing protocols for detection of small RNAs in plasma. BMC Genomics 2019; 20: 446.
[18] Freischmidt A, Müller K, Ludolph AC and Weishaupt JH. Systemic dysregulation of TDP-43 binding microRNAs in amyotrophic lateral sclerosis. Acta Neuropathologica Communications 2013; 1: 42.
[19] Junker A, Krumbholz M, Eisele S, Mohan H, Augstein F, Bittner R, Lassmann H, Wekerle H, Hohlfeld R and Meinl E. MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain : a Journal of Neurology 2009; 132: 3342-3352.
[20] Waller R, Wyles M, Heath PR, Kazoka M, Wollff H, Shaw PJ and Kirby J. Small RNA Sequencing of Sporadic Amyotrophic Lateral Sclerosis Cerebrospinal Fluid Reveals Differentially Expressed miRNAs Related to Neural and Glial Activity. Frontiers In Neuroscience 2017; 11: 731.
[21] Wei X, Li H, Zhang B, Li C, Dong D, Lan X, Huang Y, Bai Y, Lin F, Zhao X and Chen H. miR-378a-3p promotes differentiation and inhibits proliferation of myoblasts by targeting HDAC4 in skeletal muscle development. RNA Biology 2016; 13: 1300-1309.
[22] Freischmidt A, Müller K, Zondler L, Weydt P, Mayer B, von Arnim CAF, Hübers A, Dorst J, Otto M, Holzmann K, Ludolph AC, Danzer KM and Weishaupt JH. Serum microRNAs in sporadic amyotrophic lateral sclerosis. Neurobiology of Aging 2015; 36: 2660.e2615-2660.e2620.
[23] Waller R, Goodall EF, Milo M, Cooper-Knock J, Da Costa M, Hobson E, Kazoka M, Wollff H, Heath PR, Shaw PJ and Kirby J. Serum miRNAs miR-206, 143-3p and 374b-5p as potential biomarkers for amyotrophic lateral sclerosis (ALS). Neurobiology of Aging 2017; 55: 123-131.
[24] Borralho PM, Kren BT, Castro RE, da Silva IBM, Steer CJ and Rodrigues CMP. MicroRNA-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells. The FEBS Journal 2009; 276: 6689-6700.
[25] Toivonen JM, Manzano R, Oliván S, Zaragoza P, García-Redondo A and Osta R. MicroRNA-206: a potential circulating biomarker candidate for amyotrophic lateral sclerosis. PloS One 2014; 9: e89065.
[26] Marcuzzo S, Bonanno S, Kapetis D, Barzago C, Cavalcante P, D'Alessandro S, Mantegazza R and Bernasconi P. Up-regulation of neural and cell cycle-related microRNAs in brain of amyotrophic lateral sclerosis mice at late disease stage. Molecular Brain 2015; 8: 5.
[27] Cheng L-C, Pastrana E, Tavazoie M and Doetsch F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nature Neuroscience 2009; 12: 399-408.
[28] Meza-Sosa KF, Pedraza-Alva G and Pérez-Martínez L. microRNAs: key triggers of neuronal cell fate. Frontiers In Cellular Neuroscience 2014; 8: 175.
[29] Parisi C, Arisi I, D'Ambrosi N, Storti AE, Brandi R, D'Onofrio M and Volonté C. Dysregulated microRNAs in amyotrophic lateral sclerosis microglia modulate genes linked to neuroinflammation. Cell Death & Disease 2013; 4: e959.
[30] Stoklund Dittlau K, Terrie L, Baatsen P, Kerstens A, De Swert L, Janky Rs, Corthout N, Masrori P, Van Damme P, Hyttel P, Meyer M, Thorrez L, Freude K and Van Den Bosch L. FUS-ALS hiPSC-derived astrocytes impair human motor units through both gain-of-toxicity and loss-of-support mechanisms. Molecular Neurodegeneration 2023; 18: 5.
[31] De Felice B, Annunziata A, Fiorentino G, Borra M, Biffali E, Coppola C, Cotrufo R, Brettschneider J, Giordana ML, Dalmay T, Wheeler G and D'Alessandro R. miR-338-3p is over-expressed in blood, CFS, serum and spinal cord from sporadic amyotrophic lateral sclerosis patients. Neurogenetics 2014; 15: 243-253.
[32] Sheinerman KS, Toledo JB, Tsivinsky VG, Irwin D, Grossman M, Weintraub D, Hurtig HI, Chen-Plotkin A, Wolk DA, McCluskey LF, Elman LB, Trojanowski JQ and Umansky SR. Circulating brain-enriched microRNAs as novel biomarkers for detection and differentiation of neurodegenerative diseases. Alzheimer's Research & Therapy 2017; 9: 89.
[33] Li K and Wang Z. lncRNA NEAT1: Key player in neurodegenerative diseases. Ageing Research Reviews 2023; 86: 101878. 

Downloads: 4586
Visits: 199124

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.