Education, Science, Technology, Innovation and Life
Open Access
Sign In

The Expression of LINC00673 in Colon Cancer and the Melatonin's Effect on Its Expression

Download as PDF

DOI: 10.23977/medsc.2023.040115 | Downloads: 10 | Views: 434


Zhongxin Yang 1, Jiawei Tu 1, Jiansheng Wu 1


1 Wenzhou Medical University, Wenzhou, Zhejiang, China

Corresponding Author

Jiansheng Wu


Objective: In this study, the cell lines SW620 and DLD-1 which belongs to colon cancer were employed with the aim of observing melatonin's effect on the growth of colon cancer cells and exploring the influence of melatonin about the autophagy of colon cancer. Besides. It uses qRT-PCR to identify LINCRNA00673 (LINC00673) expression in colon cancer and the influence of melatonin on LINC00673 expression.For the purpose of providing a fundamental theory for melatonin in anti-cancer therapy and also presenting as a biomarker for the early detection of colon cancer. Method: 1) Cultivating the colon cancer cell lines SW620 and DLD-1, and subdividing them in accordance with distinct concentrations of melatonin: 0 mM, 1mM, and 2mM, to detect the impact of melatonin for migration and growth of colon cancer cells by Cell Scratch Test and Colony Formation Assay.2) Detecting the expression level of autophagy-related molecules in colon cancer cells in response to melatonin employing Western Blot Assay. 3) Utilizing QT-PCR, extract RNA from two groups of cells and detect the expression of LINC00673 and LINC00673 following melatonin treatment. Result: 1) The Cell Scratch test and Colony Formation Assay indicated that compared with the normal group, the scratch healing of SW620 cells and DLD-1 cells decreased. Furthermore, following melatonin administration, the number of cell colonies decreased. And the results are statistically significant. 2) Western blotting results illustrated that after the interferon of melatonin, the expression level of the autophagy-related molecule Beclin-1 increased significantly, whereas the expression of P62 decreased. 3) QT-PCR results demonstrated that the expression of LINC00673 in colon cancer cells SW620 and DLD-1 was significantly increased. Moreover, melatonin had an inhibiting effect on it. Conclusion: These in vitro experiments managed to prove that melatonin possesses a powerful anti-colon cancer effect and can inhibit the growth and spread of colon cancer. Western blotting indicated that melatonin can inhibit colon cancer through autophagy. Besides which, it is discovered that melatonin may exert its anticancer effect by influencing LINC00673.


Melatonin, colon cancer, autophagy, LINC00673


Zhongxin Yang, Jiawei Tu, Jiansheng Wu, The Expression of LINC00673 in Colon Cancer and the Melatonin's Effect on Its Expression. MEDS Clinical Medicine (2023) Vol. 4: 95-104. DOI:


[1] Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer. 2018;68(6):394–424.
[2] Siegel RL, Miller KD, Jemal A. Cancer statistics[J]. CA Cancer. 2017;67(1):7–30.
[3] Dahan L, Sadok A, Formento JL, Seitz JF, Kovacic H. Modulation of cellular redox state underlies antagonism between oxaliplatin and cetuximab in human colorectal cancer cell lines[J]. Pharmacol. 2009;158(2):610–20.
[4] Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, RGS M, Barzi A, Jemal A. Colorectal cancer statistics[J]. CA Cancer. 2017; 67(3):177–93.
[5] DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, Alteri R, Robbins AS, Jemal A. Cancer treatment and survivorship statistics[J]. CA Cancer. 2014;64(4):252–71.
[6] Hospital Authority of National Health Commission of the People's Republic of China, Chinese Society of Oncology, Chinese Medical Association. Chinese protocol of diagnosis and treatment of colorectal cancer (2020 edition) [J]. Hospital Authority of National Health Commission of the People’s Republic of China. 2020, 40(06):601-625.
[7] Banfai B, Jia H, Khatun J, et al. Long noncoding RNAs are rarely translated in two human cell lines[J]. Genome Res. 2012; 22: 1646–1657. 
[8] Leucci E. Cancer development and therapy resistance: spotlights on the dark side of the genome[J]. Pharmacol Ther. 2018; 189:22–30. 
[9] Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs[J]. Cell. 2018; 172: 393–407.
[10] Marin-Bejar O, Mas AM, Gonzalez J, et al. The human lncRNA LINC-PINT inhibits tumor cell invasion through a highly conserved sequence element [J]. Genome Biol. 2017; 18:202. 
[11] Yu T, Zhao Y, Hu Z, et al. MetaLnc9 facilitates lung cancer metastasis via a PGK1-activated AKT/mTOR pathway [J]. Cancer Res. 2017; 77:5782–5794. 
[12] Hu X, Feng Y, Zhang D, et al. A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer [J]. Cancer Cell. 2014; 26: 344–357. 
[13] Hirata H, Hinoda Y, Shahryari V, et al. Long noncoding RNA MALAT1 promotes aggressive renal cell carcinoma through Ezh2 and interacts with miR-205[J]. Cancer Res. 2015; 75: 1322–1331. 
[14] Shi Xuefei, Ma Chenhui, Zhu Qingqing, Yuan Dongmei, Sun Ming, Gu Xiaoling, Wu Guannan, Lv Tangfeng, Song Yong. Upregulation of long intergenic noncoding RNA 00673 promotes tumor proliferation via LSD1 interaction and repression of NCALD in non-small-cell lung cancer [J]. Oncotarget, 2016, 7(18).
[15] Huang M, Hou J, Wang Y, et al. Long noncoding RNA LINC00673 is  activated by SP1 and exerts oncogenic properties by interacting with LSD1 and EZH2 in gastric cancer[J]. Mol Ther.2017;25:1014–1026. 
[16] Xia E, Shen Y, Bhandari A, Zhou X, Wang Y, Yang F, et al. Long non-coding RNA LINC00673 promotes breast cancer proliferation and metastasis through regulating B7-H6 and epithelial-mesenchymal transition [J]. Am J Cancer Res. 2018; 8: 1273–87. 
[17] Vijayalaxmi, Reiter R J, Tan D X, et al. Melatonin as a radioprotective agent: a review [J]. International journal of radiation oncology, biology, physics, 2004, 59(3): 639-53.
[18] Wang J, Guo W, Chen W, et al. Melatonin potentiates the antiproliferative and pro-apoptotic effects of ursolic acid in colon cancer cells by modulating multiple signaling pathways [J]. Journal of pineal research, 2013, 54(4): 406-16. 
[19] Bonnefont-Rousselot D, Collin F, Jore D, et al. Reaction mechanism of melatonin oxidation by reactive oxygen species in vitro [J]. Journal of pineal research, 2011, 50(3): 328-35. 
[20] Perdomo J, Cabrera J, Estevez F, et al. Melatonin induces apoptosis through a caspase-dependent but reactive oxygen species-independent mechanism in human leukemia Molt-3 cells [J]. Journal of pineal research, 2013, 55(2): 195-206. 
[21] Bejarano I, Redondo P C, Espino J, et al. Melatonin induces mitochondrial-mediated apoptosis in human myeloid HL-60 cells [J]. Journal of pineal research, 2009, 46(4): 392-400. 
[22] Prieto-Dominguez N, Mendez-Blanco C, Carbajo-Pescador S, et al. Melatonin enhances sorafenib actions in human hepatocarcinoma cells by inhibiting mTORC1/p70S6K/HIF-1 alpha and hypoxia-mediated mitophagy [J]. Oncotarget, 2017, 8(53): 91402-14. 
[23] Martin-Renedo J, Mauriz J L, Jorquera F, et al. Melatonin induces cell cycle arrest and apoptosis in hepatocarcinoma HepG2 cell line [J]. Journal of pineal research, 2008, 45(4): 532-40. 
[24] Liu V W S, Yau W L, Tam C W, et al. Melatonin Inhibits Androgen Receptor Splice Variant-7 (AR-V7)-Induced Nuclear Factor-Kappa B (NF-B) Activation and NF-B Activator-Induced AR-V7 Expression in Prostate Cancer Cells: Potential Implications for the Use of Melatonin in Castration-Resistant Prostate Cancer (CRPC) Therapy [J]. International Journal of Molecular Sciences, 2017, 18(6) 
[25] Sainz R M, Mayo J C, Tan D X, et al. Melatonin reduces prostate cancer cell growth leading to neuroendocrine differentiation via a receptor and PKA independent mechanism [J]. Prostate, 2005, 63(1): 29-43. 
[26] Lee Y D, Kim J Y, Lee K H, et al. Melatonin attenuates lipopolysaccharide-induced acute lung inflammation in sleep-deprived mice [J]. Journal of pineal research, 2009, 46(1): 53-7. 
[27] Plaimee P, Weerapreeyakul N, Thumanu K, et al. Melatonin induces apoptosis through biomolecular changes, in SK-LU-1 human lung adenocarcinoma cells [J]. Cell proliferation, 2014, 47(6): 564-77. 
[28] Song J, Ma S J, Luo J H, et al. Melatonin induces the apoptosis and inhibits the proliferation of human gastric cancer cells via blockade of the AKT/MDM2 pathway [J]. Oncology reports, 2018, 39(4): 1975-83.
[29] Zhu C, Huang Q, Zhu H. Melatonin Inhibits the Proliferation of Gastric Cancer Cells through Regulating the miR-16-5p-Smad3 Pathway [J]. DNA Cell Biol, 2018, 37(3): 244-52.
[30] Cartwright TH. Treatment decisions after diagnosis of metastatic colorectal cancer [J]. Clin Colorectal Cancer. 2012; 11(3):155–66.
[31] Dahan L, Sadok A, Formento JL, Seitz JF, Kovacic H. Modulation of cellular redox state underlies antagonism between oxaliplatin and cetuximab in human colorectal cancer cell lines [J]. Br J Pharmacol. 2009; 158(2):610–20.
[32] Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, RGS M, Barzi A, Jemal A. Colorectal cancer statistics[J]. CA Cancer. 2017; 67(3):177–93.
[33] DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, Alteri R, Robbins AS, Jemal A. Cancer treatment and survivorship statistics[J]. CA Cancer. 2014; 64(4):252–71.
[34] Ponting C.P., Oliver P.L., Reik W. Evolution and Functions of Long Noncoding RNAs [J]. Cell. 2009; 136: 629–641.
[35] Hu G., Niu F., Humburg B.A., Liao K., Bendi S., Callen S., Fox H.S., Buch S. Molecular mechanisms of long noncoding RNAs and their role in disease pathogenesis[J]. Oncotarget. 2018; 9: 18648–18663. 
[36] Wang K.C., Chang H.Y. Molecular mechanisms of long noncoding RNAs [J]. Mol. Cell. 2011; 43: 904–914. 
[37] Akhade V.S., Pal D., Kanduri C. Long Noncoding RNA: Genome Organization and Mechanism of Action [J]. Med. Biol. 2017; 1008: 47–74. 
[38] Huarte M. The emerging role of lncRNAs in cancer [J]. Nat Med. 2015 Nov;21(11):1253-61. 
[39] Bussemakers, M.J. et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer [J]. Cancer Res. 59, 5975–5979 (1999).
[40] Srikantan V. et al. PCGEM1, a prostate-specific gene, is overexpressed in prostate cancer [J]. Proc. Natl. Acad. Sci. USA 97, 12216–12221 (2000).
[41] Hessels D. et al. DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer[J]. Eur. Urol. 44, 8–15 discussion, 15–16 (2003).
[42] Ji P. et al. MALAT-1, a novel noncoding RNA, and thymosin β-4 predict metastasis and survival in early-stage non-small cell lung cancer [J]. Oncogene 22, 8031–8041 (2003).
[43] Gutschner T., Hammerle, M. & Diederichs, S. MALAT1–a paradigm for long noncoding RNA function in cancer [J].Med. 91, 791–801 (2013).
[44] Huang M, Hou J, Wang Y, Xie M, Wei C, Nie F, Wang Z and Sun M. Longnoncoding RNALINC00673 isactivatedby SP1 and exertson-cogenicpropertiesbyinteracting with LSD 1and EZH 2 ingastriccancer[J]. Mol Ther 2017;25:1014-1026.
[45] Lu W, Zhang H, Niu Y, Wu Y, Sun W, Li H, Kong J, Ding K, Shen H M, Wu H, Xia D and Wu Y. Longnon-codingRNA linc00673 regulated non-small cell lung cancer proliferation,migra-tion,invasion and epithelial mesenchymal transition by sponging miR-150-5p[J].MolCancer2017;16:118.
[46] Abdul-Rahman U,Gyorffy Band Adams BD linc00673(ERRLR01 )is a prognostic indicator of over all survival inbreast cancer[J].Transcrip-tion2018;9:17-29.
[47] Guney Y, Hicsonmez A, Uluoglu C, et al. Melatonin prevents inflammation and oxidative stress caused by abdominopelvic and total body irradiation of rat small intestine [J]. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas, 2007, 40(10): 1305-14. 
[48] Proietti S, Cucina A, Minini M, et al. Melatonin, mitochondria, and the cancer cell [J]. Cellular and molecular life sciences: CMLS, 2017, 74(21): 4015-25. 
[49] Maharaj D S, Glass B D, Daya S. Melatonin: new places in therapy [J]. Bioscience reports, 2007, 27(6): 299-320. 
[50] Rodriguez C, Martin V, Herrera F, et al. Mechanisms Involved in the Pro-Apoptotic Effect of Melatonin in Cancer Cells [J]. International Journal of Molecular Sciences, 2013, 14(4): 6597-613. 
[51] Panzer A, Viljoen M. The validity of melatonin as an on costatic agent [J]. Journal of pineal research, 1997, 22(4): 184-202. 
[52] Dubocovich M L, Delagrange P, Krause D N, et al. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors [J]. Pharmacological reviews, 2010, 62(3): 343-80. 
[53] Lopes J, Arnosti D, Trosko J E, et al. Melatonin decreases estrogen receptor binding to estrogen response elements sites on the OCT4 gene in human breast cancer stem cells [J]. Genes Cancer, 2016, 7(5-6): 209-17. 
[54] Ghielmini M, Pagani O, de Jong J, et al. Double-blind randomized study on the myeloprotective effect of melatonin in combination with carboplatin and etoposide in advanced lung cancer [J]. British journal of cancer, 1999, 80(7): 1058-61. 
[55] Lissoni P, Barni S, Meregalli S, et al. Modulation of cancer endocrine therapy by melatonin: a phase II study of tamoxifen plus melatonin in metastatic breast cancer patients progressing under tamoxifen alone [J]. British journal of cancer, 1995, 71(4): 854-6. 
[56] Malhotra S, Sawhney G, Pandhi P. The therapeutic potential of melatonin: a review of the science [J]. MedGenMed : Medscape general medicine, 2004, 6(2): 46. 
[57] Lissoni P, Meregalli S, Fossati V, et al. A randomized study of immunotherapy with low-dose subcutaneous interleukin-2 plus melatonin vs chemotherapy with cisplatin and etoposide as first-line therapy for advanced non-small cell lung cancer [J]. Tumori, 1994, 80(6): 464-7. 
[58] Bhattacharya S, Patel K K, Dehari D, et al. Melatonin and its ubiquitous anticancer effects [J]. Molecular and cellular biochemistry, 2019, 462(1-2): 133-55.

Downloads: 3912
Visits: 170374

Sponsors, Associates, and Links

All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.