Education, Science, Technology, Innovation and Life
Open Access
Sign In

Molecular Recognition of Cyclodextrins and Their Derivatives

Download as PDF

DOI: 10.23977/erej.2023.070103 | Downloads: 10 | Views: 478

Author(s)

Xurundong Kan 1, Lijuan Zhao 1, Xingyuan Liu 1, Yan Zheng 1, Jianqiang Zhang 1

Affiliation(s)

1 School of Biology and Chemistry, Pu'er College, Puer, China

Corresponding Author

Xurundong Kan

ABSTRACT

Cyclodextrins and their derivatives have been widely used in many fields such as science and technology as molecular receptors, artificial enzyme models and drug carriers because of their unique structures and characteristics. Cyclodextrins and their derivatives have hydrophobic cavities, so that they can interact with various guest molecules through non-covalent bonds to form "molecular capsules", thus changing the physical and chemical properties of guest molecules.

KEYWORDS

Cyclodextrin derivatives; Molecular recognition; Anticancer activity; Drug carrier

CITE THIS PAPER

Xurundong Kan, Lijuan Zhao, Xingyuan Liu, Yan Zheng, Jianqiang Zhang, Molecular Recognition of Cyclodextrins and Their Derivatives. Environment, Resource and Ecology Journal (2023) Vol. 7: 13-23. DOI: http://dx.doi.org/10.23977/erej.2023.070103.

REFERENCES

[1] Liu Yu. Nanometer Supramolecular Chemistry, Chemistry and Application Publishing Center of Chemical Industry Press, 2004.
[2] Lehn J M. Supramolecular chemidtry--scope and perspectives molecules, supermolecules, and moleculars devices (nobel lecture). Journal of Inclusion Phenomena. 1989. 27:299-308.
[3] Hagbani T A, Nazzal S. Curcumin complexation with cyclodextrins by the autoclave process: method development and characterization of complex formation [J]. International Journal of Pharmaceutics, 2017, 520(1–2):173-180.
[4] Krakowiak K E, Bradshaw J S, Dalley N K, et al. Preparation and cation complexing properties of some macropolycyclic ligands[J]. Journal of Organic Chemistry, 1992, 57(11):3166-3173.
[5] Li Wenlin, Li Meilan. Present situation and progress of supramolecular chemistry [J]. Guangdong Chemical Industry, 2009, 36(9):80-81.
[6] Cram D. The design of molecular hosts, guests, and their complexes [J]. J. Angew. Chem., 1988, 27(8): 1009-1020.
[7] Sigurdsson H, Stefanson E, Gudmundsdoir E, et al. Cyclodextrin formulation of dorzolamide and its distribution in the eye after topical administration[J]. Journal Controlled Release, 2005, 120(1):255-262. 
[8] Uekama K. Design and evaluation of cyciodextrin-based drug formulation [J]. Chemical & Pharmaceutical Bulletin, 2004, 52(8):900-915.
[9] Konno A, Misaki M, Toda J, et al. Bitterness reduction of narngin and limonin by β-cyclodextrin[J]. Agricultural and Biological Chemistry, 1986, 46(9):2203-2208.
[10] Tong L H, Hou Zh J, Inoue Y. Molecular recognition by modified cyclodextrins inclusion comlexation of β-cyclodextrin 6-O-monobenzoate with acyclicand cyclic hydrocarbons [J]. Journal of the Chemical Society, Perkin Transactions 2, 1992, 4(7):1253-1257.
[11] Sun Mo. Construction of supramolecular polymer of β-CD and porphyrin and its magnetic resonance imaging study [D]. Nankai University, 2014.
[12] Szejtli JJ. Introduction and general overview of cyclodextrin chemistry [J]. Chemical Reviews, 1998, 98(5): 1743-1754.
[13] Ramos Cabrer P, AlvarezParrilla E, Meijide F, et al. Complexation of Sodium Cholate and Sodium Deoxycholate by β-Cyclodextrin and Derivatives [J]. Langmuir, 1999, 15(17):5489-5495.
[14] Stid J.W., Atwood J.L. Supramolecular Chemistry [M]. Beijing: Chemical Industry Press, 2006.
[15] Zhang Laixin, Hu Xiaobing. New progress in synthesis and application of new supramolecular compounds [J]. Applied Chemical Engineering, 2013, 42(10): 1907-1909.
[16] Kong Rui, Shi Dongjian, Liu Rongjin, et al. Research progress of β-CD supramolecular assembly [J]. Polymer Bulletin, 2012, (12): 36-43.
[17] Breslow R, Dong SD. Biomimetic reactions catalyzed by cyclodextrins and their derivatives[J]. Chemical Reviews, 1998, 98(5):1997-2012.
[18] Szejtli J. Cyclodextrins and their inclusion complexes in the biotechnology and chemical industry. Magyar Kemilusok Lapja, 1990, 45(3-4):98-106.
[19] Nascimento C S Jr, Anconi C P, Dos Santos H F, et al. Theoretical Study of the alpha-cyclodextrin dimer Cyclodextrin Dimer. Journal of Physical Chemistry A 2005, 109(14):3209-3219.
[20] Khan M Z, Chuaqui C A. ChemInform Abstract: Cyclodextrin Chemistry: Synthesis of Cyclodextrin Derivatives, Complexation, and γ-Radiation Effects [J]. Cheminform, 1991, 22(5). 
[21] Szejtli J, Cyclolab B H. Chemistry, physical and biological properties of cyclodextrin [J]. Supramolecular Chemistry, 1996, 3:5-40.
[22] Liu Y, Chen G S, Chen Y, et al. Synthesis of Tripeptides as Potent Yersinia Protein Tyrosine Phosphatase Inhibitors [J]. Bioorganic & medicinal chemistry letters, 2005, 15:4037-4042.
[23] Harata K. Structural Aspects of Stereodifferentitation in the Solid State [J]. Chemical Reviews. 1998, 98(3): 1803-1828. 
[24] Valerian TS, Kenny BL. Cyclodextrins: introduction [J]. Chemical Reviews, 1998, 98(5): 1741-1742.
[25] Szejtli J. Cyclodextrins in Chemical Technology [M]. Cyclodextrin Technology. Springer Netherlands, 1988: 365-410.
[26] Ivan M. Savic, Ivana M. Savic-Gajic, Vesna D. Nikolic, Enhencemnet of solubility and photostability of rutin by complexation with β-cyclodextrin and (2-hydroxypropyl)-β-cyclodextrin[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2016, 86(1):1-11.
[27] Brewster M E, Neeskens P, Peeters J. Solubilization of the anti-HIV drug candidate, loviride, using beta- and gamma-cyclodextrin derivatives [J]. European Journal of Pharmaceutical Sciences, 2004: S47-S47.
[28] Zhao Minggang. Synthesis and properties of new ββ-CD derivatives [D]. Shandong: Shandong University, 2007.
[29] Petter R C, Salek J S, Sikorski C T. Cooperative Binding by Aggregated mono-6-(alkylami-no)-β-cyclodextrins[J]. Journal of the American Chemical Society, 1990, 112(10): 3860-3868.
[30] Sun Jing, Zhang Wenzhi, Bai Liming, et al. Preparation of mono -6- oxo-p-toluenesulfonyl -β-β-CD [J]. Journal of Qiqihar University (Natural Science Edition), 2016, 32(3):58-60.
[31] Liu Y, Li X Y, Guo D S, Chi H. Synthesis of L-cystine modified cyclodextrin monomers and dimers with primary-side versus secondary-side and their molecular binding behaviours. Supramolecular Chemistry, 2008, 20(7): 609–617.
[32] Liu Yu, You Changcheng, Zhang Hengyi, Molecular Recognition and Assembly of Supramolecular Chemistry- Synthetic Receptors [M]. Nankai University Press, Tianjin, 2001.
[33] Liu. Y, You C C, Wada T, Inoue Y. Molecular recognition of fluorescent dyes with novel triethylenetetraamine te thered Bis(β-cyclodextrin) and selectivity by Tether Ligation[J]. Tetrahedron Lett. 2000, 41:6869-6873.
[34] Lehn JM. Perspectives in supramolecuar chemistry from molecular recognition towards molecular information processing and self-organization [J]. Angewandte Chemie-International Edition, 1990, 29(5):134-149.
[35] Ke C F, Yang C, Liang W T, et al. Critical stereocontrol by inter-amino distance of supramolecular photocyclodimerization of 2-anthracenecarboxylate mediated by 6-(ω-aminoalkylamin-o)-γ-cyclodextrins[J]. New Journal of Chemistry, 2010, 34(7): 1323-1329.
[36] Liu Y, Chen G S, Chen Y, et al. Inclusion complexes of paclitaxel and oligo(ethylenediamino) bridged bis(β-cyclodextrin)s: solubilization and antitumor activity[J]. Bioorganic & Medicinal Chemistry, 2004, 12(22):5767-5775.
[37] Takenaka Y, Nakashima H, Yoshida N. Fluorescent amino-β-cyclodextrin derivative as a receptor for various types of alcohols having cyclic and macrocyclic rings [J]. Journal of Molecular Structure, 2007, 871(1-3):149-155.
[38] Qi A D, Li L, Yu L. Molecular Binding Ability and Selectivity of Natural α -, β -, γ -Cyclodextrins and Oligo(ethylenediamino) Modified β -Cyclodextrins with Chinese Traditional Medicines[J]. Journal of Inclusion Phenomena & Macrocyclic Chemistry, 2003, 45(1-2): 69-72.
[39] Ramos Cabrer P, AlvarezParrilla E, Meijide F, et al. Complexation of Sodium Cholate and Sodium Deoxycholate by β-Cyclodextrin and Derivatives†[J]. Langmuir, 1999, 15(17).
[40] Ma X, Yang B, Zhao Y, et al. Host–Guest Inclusion System of Scutellarin with Polyamine-β-Cyclodextrin: Preparation, Characterisation, and Anti-Cancer Activity[J]. Australian Journal of Chemistry, 2015, 68(6): 946.
[41] Prabu S, Sivakumar K, Nayaki S K, et al. Host-guest interaction of cytidine in β-cyclodextrin microcavity: Characterization and docking study [J]. Journal of Molecular Liquids, 2016, 219:967-974.
[42] Zhao Q, Chen Y, Sun M, et al. Construction and drug delivery of a fluorescent TPE-bridged cyclodextrin/ hyaluronic acid supramolecular assembly [J]. Rsc Advances, 2016, 6(56):50673-50679.
[43] Hădărugă D I, Hădărugă N G, Bandur G N, et al. Water content of flavonoid/cyclodextrin nanoparticles: Relationship with the structural descriptors of biologically active compounds [J]. Food Chemistry, 2012, 132(4): 1651-1659.
[44] Li Zhiwen. Study on the interaction of several new PPT supramolecular systems with BSA and DNA [D]. Yunnan Normal University, 2017.
[45] Yang B, Zhao Y L, Yang X, et al. Scutellarin-cyclodextrin conjugates: Synthesis, characterization and anticancer activity [J]. Carbohydrate Polymers, 2013, 92(2): 1308-1314.
[46] Ren Yufeng, Niu Raomei, Wang Zhi, et al. Preparation and characterization of β-CD inclusion compound of oleanolic acid and ursolic acid [J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2017(3):89-95.
[47] Du J J, Zhao L J, et al. Preparation, characterization, solubilization and antioxidant activity of polyamine modified β-cyclodextrins with baicalein inclusion complexes [J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2018, 47(18):847-858.
[48] Yang S L, Zhao L J, et al. Inclusion complexes of flavonoids with propylenediamine modified β-cyclodextrin: Preparation, characterization and antioxidant [J]. Journal of Molecular Structure, 2019, 1183(3):118-125.
[49] Shuai X, Merdan T, Unger F, Kissel T. Supramolecular gene delivery vectors showing enhanced transgene expression and good biocompatibility [J]. Bioconjugate Chemistry. 2005, 47(18):322-629.
[50] Harada A, Okada M, Kamachi M. Complex formation between poly (oxytrimethylene) and cyclodextrins [J]. Acta Polymerica, 2010, 46(6):453-457.
[51] Shigekawa H, Miyake K, Sumaoka J, et al. The molecular abacus: STM manipulation of cyclodextrin necklace [J]. Journal of the American Chemical Society, 2000, 122(22): 5411-5412.
[52] Harada A, Li J, Kamachi M. Supramolecular Assemblies of Cyclodextrins with Polymers and Preparation of Polyrotaxanes [M]. Ordering in Macromolecular Systems, 1994.
[53] Miyauchi M, Harada A. Construction of supramolecular polymers with alternating α-, β-Cyclodextrin units using conformational change induced by competitive guests [J]. Journal of the American Chemical Society, 2004, 126(37): 11418-11419.
[54] Okada M, Harada A. Poly (polyrotaxane): photoreactions of 9-anthracene-capped polyrotaxane [J]. Macromolecules, 2003, 36(26): 9701-9703.
[55] Liu Y, Liang P, Chen Y, et al. Interlocked Bis(polyrotaxane) of Cyclodextrin−Porphyrin Systems Mediated by Fullerenes [J]. Macromolecules, 2005, 38(22): 9095-9099.
[56] Slowing I I, Vivero-Escoto J L, Wu C W, et al. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers [J]. Advanced Drug Delivery Reviews, 2008, 60(11):1278-1288.
[57] Brieuc G, Sophie M, Vincent L, Jean-jacques R. How to modulate the chemical structure of polyoxazolines by appropriate functionalization [J]. Macromolecular Rapid Communications, 2012, 33(19):1600-1612.
[58] Dam HH, Caruso F. Modular click assembly of degradable capsules using polyrotaxanes. [J]. Acs Nano, 2012, 6(6): 4686.
[59] Allen TM, Cullis PR. Liposomal drug delivery systems: From concept to clinical applications[J]. Advanced Drug Delivery Reviews, 2013, 65(1): 36-48.
[60] Liu Y, Yu L, Chen Y, et al. Construction and DNA Condensation of Cyclodextrin-Based Polypseudorotaxanes with Anthryl Grafts [J]. Journal of the American Chemical Society, 2007, 129(35): 10656-10657.
[61] Li J, Ni X, Leong KW. Injectable drug-delivery systems based on supramolecular hydrogels formed by poly (ethylene oxide) s and α-cyclodextrin[J]. Journal of Biomedical Materials Research Part A, 2010, 65(2): 196-212.
[62] Li J, Li X, Ni X, et al. Self-assembled supramolecular hydrogels formed by biodegradable PEO–PHB–PEO triblock copolymers and α-cyclodextrin[J]. Biomaterials, 2006, 27(22): 4132-4140.
[63] Wang J, Li L, Zhu Y, et al. Hydrogels assembled by inclusion complexation of poly (ethylene glycol) with alpha-cyclodextrin [J]. Asia-Pacific Journal of Chemical Engineering, 2009, 4(5): 544-550.
[64] Li X, Xiao J, Wang X, et al. pH-responsive pseudorotaxane between comblike PEO-grafted triblock polymer and α-cyclodextrin [J]. Colloid and Polymer Science, 2014, 292(12): 3243-3249.
[65] Zhou Z, Li X, Chen X, et al. Synthesis of ionic liquids functionalized β-cyclodextrin-bonded chiral stationary phases and their applications in high-performance liquid chromatography.[J]. Analytica Chimica Acta, 2010, 678(2):208-214.
[66] Harada A, Li J, Kamachi M. Double-stranded inclusion complexes of cyclodextrin threaded onpoly(ethylene glycol) [J]. Nature, 1990, 370(6485): 126-128.
[67] Harada A, Li J, Kamachi M. Synthesis of a tubular polymer from threaded cyclodextrins[J]. Nature, 1993, 364(6437): 516-518.
[68] Yu S, Zhang Y, Wang X, et al. Synthesis of paclitaxel-conjugated β-cyclodextrin polyrotaxane and its antitumor activity [J]. Angewandte Chemie International Edition, 2013, 52(28): 7272-7277.
[69] Lai Chunli, Lai Le, Zhao Jianbin, et al. Preparation of polyrotaxane-camptothecin conjugate and its antitumor effect [J]. Journal of Pharmacy, 2010(7): 920-925.
[70] Qin Q, Ma X, Liao X, et al. Scutellarin-graft cationic β-cyclodextrin-polyrotaxane: Synthesis, characterization and DNA condensation [J]. Materials Science and Engineering: C, 2017, 129(71): 1028-1036.

Downloads: 3408
Visits: 177540

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.