Education, Science, Technology, Innovation and Life
Open Access
Sign In

Calculating Feasibility of Ocean Iron Fertilization with Post-Volcanic Eruption Phenomena

Download as PDF

DOI: 10.23977/erej.2022.060512 | Downloads: 11 | Views: 1272

Author(s)

Bill Sun 1

Affiliation(s)

1 The Webb Schools, 4255 El Molino Boulevard, Chino Hills, United States

Corresponding Author

Bill Sun

ABSTRACT

This review proposes a novel method to accurately gauge the full ecological impact of manmade iron fertilization upon local environments not through direct experimentation, but by observing similar natural manifestations of fertilization in volcanic eruptions. Two case studies of specific volcanoes - Kilauea in Hawaii and Eyjafjallajökull in Iceland - show that firstly, ocean iron fertilization is capable of self-sustainment after ocean iron fertilization deployments in HNLC (High Nutrient Low Chlorophyll) regions, and secondly, ocean fertilization can be extended beyond the usage of iron dust fertilizer in ideal situations. For example, simple physical disturbances under the shores of one of Hawaii's islands propelled the large-scale development of phytoplankton colonies, in a process called "organic nitrate displacement". Kilauea's volcanic breakouts contributed to greenhouse gas emissions but were proportionally absorbed (7:1 ratio) by local phytoplankton growth. In another case of post-eruption phytoplankton development at Eyjafjallajökull in Iceland, while the volcanic eruptions dispersed a relatively small amount of iron-infused tephra through atmospheric injection and way of local winds, the airborne nutrients heavily stimulated phytoplankton colonies throughout surrounding waters and generated large biomasses of algae that were visible from space. After consecutive months of eruptions by Eyjafjallajökull in 2010, the airborne spread of iron-rich tephra particles lead to visible growths in phytoplankton colonies bordering other nearby countries. Through multiple comparative case studies of post volcanic eruption phenomena, ocean iron fertilization demonstrates its efficiency in initiating phytoplankton growth while revealing unexpected safety concerns in its deployment.

KEYWORDS

environmental engineering, bioremediation, volcanic eruption, climate change, iron fertilization

CITE THIS PAPER

Bill Sun, Calculating Feasibility of Ocean Iron Fertilization with Post-Volcanic Eruption Phenomena. Environment, Resource and Ecology Journal (2022) Vol. 6: 108-114. DOI: http://dx.doi.org/10.23977/erej.2022.060512.

REFERENCES

[1] Zambri, B.; Robock, A.; Mills, M. J.; Schmidt, A. Modeling the 1783–1784 Laki Eruption in Iceland: 2. Climate Impacts. Journal of Geophysical Research: Atmospheres 2019. https://doi.org/10.1029/2018jd029554.
[2] Robock, A. The Volcanic Contribution to Climate Change of the Past 100 Years https: // www. sciencedirect.com/ science/article/abs/pii/B9780444883513500349?via%3Dihub (accessed 2022 -08 -03).
[3] Eric Klobas, J.; Wilmouth, D. M.; Weisenstein, D. K.; Anderson, J. G.; Salawitch, R. J. Ozone Depletion Following Future Volcanic Eruptions. Geophysical Research Letters 2017, 44 (14), 7490–7499. https: // doi. org/ 10. 1002/ 2017gl073972.
[4] Martin, J. H. Glacial-Interglacial CO2change: The Iron Hypothesis. Paleoceanography 1990, 5 (1), 1–13. https: // doi. org/10.1029/pa005i001p00001.
[5] van der Ploeg, R. R.; Böhm, W.; Kirkham, M. B. On the Origin of the Theory of Mineral Nutrition of Plants and the Law of the Minimum. Soil Science Society of America Journal 1999, 63 (5), 1055–1062. https: // doi. org/ 10. 2136/ sssaj1999. 6351055x.
[6] Emerson, D. Biogenic Iron Dust: A Novel Approach to Ocean Iron Fertilization as a Means of Large Scale Removal of Carbon Dioxide From the Atmosphere https://www.frontiersin.org/articles/10.3389/fmars.2019.00022/full (accessed 2022 -08 -03).
[7] Fuentes-George, K. Consensus, Certainty, and Catastrophe: Discourse, Governance, and Ocean Iron Fertilization. Global Environmental Politics 2017, 17 (2), 125–143. https://doi.org/10.1162/glep_a_00404.
[8] Antilla, L. Self-Censorship and Science: A Geographical Review of Media Coverage of Climate Tipping Points. Public Understanding of Science 2008, 19 (2), 240–256. https://doi.org/10.1177/0963662508094099.
[9] Thiele, S.; Fuchs, B. M.; Ramaiah, N.; Amann, R. Microbial Community Response during the Iron Fertilization Experiment LOHAFEX. Applied and Environmental Microbiology 2012, 78 (24), 8803–8812. https: // doi. org/ 10. 1128/ aem. 01814-12.
[10] Martin, J. H.; Fitzwater, S. E.; Gordon, R. M. Iron Deficiency Limits Phytoplankton Growth in Antarctic Waters. Global Biogeochemical Cycles 1990, 4 (1), 5–12. https://doi.org/10.1029/gb004i001p00005.
[11] Phytoplankton as Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate. Sustainability 2018, 10 (3), 869. https://doi.org/10.3390/su10030869.
[12] Sharpton, V. L.; Ward, P. D. Global Catastrophes in Earth History; an Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality; Geological Society of America, 1990.
[13] How Kilauea’s lava fed a massive algae bloom https://www.sciencenews.org/article/kilauea-lava-eruptions-fed-massive-ocean-phytoplankton-bloom.
[14] Siegel, B. Z.; Siegel, S. M.; Nachbar-Hapai, M.; Russell, C. Geotoxicology: Are Thermal Mercury and Sulfur Emissions Hazardous to Health? Natural and Man-Made Hazards 1988, 589–597. https://doi.org/10.1007/978-94-009-1433-9_39.
[15] Wilson, S. T.; Hawco, N. J.; Armbrust, E. V.; Barone, B.; Björkman, K. M.; Boysen, A. K.; Burgos, M.; Burrell, T. J.; Casey, J. R.; DeLong, E. F.; Dugenne, M.; Dutkiewicz, S.; Dyhrman, S. T.; Ferrón, S.; Follows, M. J.; Foreman, R. K.; Funkey, C. P.; Harke, M. J.; Henke, B. A.; Hill, C. N. Kīlauea Lava Fuels Phytoplankton Bloom in the North Pacific Ocean. Science 2019, 365 (6457), 1040–1044. https://doi.org/10.1126/science.aax4767.
[16] Browning, T. J.; Bouman, H. A.; Henderson, G. M.; Mather, T. A.; Pyle, D. M.; Schlosser, C.; Woodward, E. M. S.; Moore, C. M. Strong Responses of Southern Ocean Phytoplankton Communities to Volcanic Ash. Geophysical Research Letters 2014, 41 (8), 2851–2857. https://doi.org/10.1002/2014gl059364.
[17] Siegel, B. Z.; Siegel, S. M.; Nachbar-Hapai, M.; Russell, C. Geotoxicology: Are Thermal Mercury and Sulfur Emissions Hazardous to Health? Natural and Man-Made Hazards 1988, 589–597. https://doi.org/10.1007/978-94-009-1433-9_39.
[18] Su, X.; Kushima, A.; Halliday, C.; Zhou, J.; Li, J.; Hatton, T. A. Electrochemically-Mediated Selective Capture of Heavy Metal Chromium and Arsenic Oxyanions from Water. Nature Communications 2018, 9 (1). https: // doi. org/ 10. 1038/ s41467-018-07159-0.
[19] Pyle, D. M. The Thickness, Volume and Grainsize of Tephra Fall Deposits. Bulletin of Volcanology 1989, 51 (1), 1–15. https://doi.org/10.1007/bf01086757.
[20] Achterberg, E. P.; Moore, C. M.; Henson, S. A.; Steigenberger, S.; Stohl, A.; Eckhardt, S.; Avendano, L. C.; Cassidy, M.; Hembury, D.; Klar, J. K.; Lucas, M. I.; Macey, A. I.; Marsay, C. M.; Ryan-Keogh, T. J. Natural Iron Fertilization by the Eyjafjallajökull Volcanic Eruption. Geophysical Research Letters 2013, 40 (5), 921–926. https: // doi. org/ 10. 1002/ grl. 50221.
[21] Mason, B. Magnificent Marine Algae Blooms Seen From Space https://www.wired.com/2010/08/phytoplankton-blooms-gallery/ (accessed 2022 -08 -09).
[22] Duggen, S.; Olgun, N.; Croot, P.; Hoffmann, L.; Dietze, H.; Delmelle, P.; Teschner, C. The Role of Airborne Volcanic Ash for the Surface Ocean Biogeochemical Iron-Cycle: A Review. Biogeosciences 2010, 7 (3), 827–844. https://doi.org/10.5194/bg-7-827-2010.

Downloads: 3084
Visits: 172106

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.