Education, Science, Technology, Innovation and Life
Open Access
Sign In

Research Progress on the Correlation between Human Intestinal Microbiota and Diabetic Retinopathy

Download as PDF

DOI: 10.23977/medsc.2022.030507 | Downloads: 12 | Views: 607

Author(s)

Wenjun Jiang 1, Ya Li 2

Affiliation(s)

1 Shaanxi University of Traditional Chinese Medicine, Xi'an, China
2 Clinical Laboratory Center of Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China

Corresponding Author

Ya Li

ABSTRACT

Diabetic retinopathy is the most common type of specific complication of diabetes and is the leading cause of blindness in adults. Compared with normal people, the inflammatory bacteria in the intestinal tract of diabetic retinopathy patients decreased, while the pro-inflammatory bacteria increased, leading to the increase of inflammatory factors in the body, leading to the aggravation of the condition of diabetic retinopathy patients. This provides a new research direction for the treatment of diabetic retinopathy by changing the structure and quantity of human intestinal microflora. In this review, we will summarize the research progress of intestinal microbiota and diabetic retinopathy, and discuss the action mechanism, treatment prospects and prospects of intestinal microbiota in diabetic retinopathy, so as to contribute to the development of new and targeted treatment methods in this field.

KEYWORDS

Diabetic retinopathy, Intestinal microbe, Bile acid, Short chain fatty acids

CITE THIS PAPER

Wenjun Jiang, Ya Li, Research Progress on the Correlation between Human Intestinal Microbiota and Diabetic Retinopathy. MEDS Clinical Medicine (2022) Vol. 3: 37-43. DOI: http://dx.doi.org/10.23977/medsc.2022.030507.

REFERENCES

[1] P. Saeedi, I. Petersohn, P. Salpea, B. Malanda, S. Karuranga, N. Unwin, S. Colagiuri, L. Guariguata, A.A. Motala, K. Ogurtsova, J.E. Shaw, D. Bright, R. Williams, Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition, Diabetes Res Clin Pract, 157 (2019) 107843.
[2] M.L. Rodríguez, S. Pérez, S. Mena-Mollá, M.C. Desco, L. Ortega Á, Oxidative Stress and Microvascular Alterations in Diabetic Retinopathy: Future Therapies, Oxid Med Cell Longev, 2019 (2019) 4940825.
[3] Y. Li, J.M. Busoy, B.A.A. Zaman, Q.S.W. Tan, G.S.W. Tan, V.A. Barathi, N. Cheung, J.J. Wei, W. Hunziker, W. Hong, T.Y. Wong, C.M.G. Cheung, A novel model of persistent retinal neovascularization for the development of sustained anti-VEGF therapies, Exp Eye Res, 174 (2018) 98-106.
[4] W. Wang, A.C.Y. Lo, Diabetic Retinopathy: Pathophysiology and Treatments, Int J Mol Sci, 19 (2018).
[5] Q. Kang, C. Yang, Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications, Redox Biol, 37 (2020) 101799.
[6] J. Xu, L.J. Chen, J. Yu, H.J. Wang, F. Zhang, Q. Liu, J. Wu, Involvement of Advanced Glycation End Products in the Pathogenesis of Diabetic Retinopathy, Cell Physiol Biochem, 48 (2018) 705-717.
[7] N. Mahajan, P. Arora, R. Sandhir, Perturbed Biochemical Pathways and Associated Oxidative Stress Lead to Vascular Dysfunctions in Diabetic Retinopathy, Oxid Med Cell Longev, 2019 (2019) 8458472.
[8] Leonor, García-Bayona, Laurie, Comstock, Bacterial antagonism in host-associated microbial communities, Science, (2018).
[9] B. Dalile, L.V. Oudenhove, B. Vervliet, K. Verbeke, The role of short-chain fatty acids in microbiota–gut–brain communication, Nature Reviews Gastroenterology &#38 Hepatology, 16 (2019) 1.
[10] E. Beli, Y. Yan, L. Moldovan, C.P. Vieira, R. Gao, Y. Duan, R. Prasad, A. Bhatwadekar, F.A. White, S. Townsend, Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival in db/db Mice, Diabetes, (2018) db180158.
[11] E. Coli, T. Phages, G. Tetz, S.M. Brown, Y. Hao, V. Tetz, type 1 diabetes: an association between autoimmunity the dynamics of gut amyloid- 1 producing, (2019).
[12] G. Zhao, T. Vatanen, L. Droit, A. Park, A.D. Kostic, T.W. Poon, H. Vlamakis, H. Siljander, T. Härkönen, A.M. Hämäläinen, A. Peet, V. Tillmann, J. Ilonen, D. Wang, M. Knip, R.J. Xavier, H.W. Virgin, Intestinal virome changes precede autoimmunity in type I diabetes-susceptible children, Proc Natl Acad Sci U S A, 114 (2017) E6166-e6175.
[13] S. Rowan, S. Jiang, T. Korem, J. Szymanski, A. Taylor, Involvement of a gut–retina axis in protection against dietary glycemia-induced age-related macular degeneration, Proceedings of the National Academy of Sciences, 114 (2017) 201702302.
[14] T. Zhu, M.O. Goodarzi, Metabolites Linking the Gut Microbiome with Risk for Type 2 Diabetes, Curr Nutr Rep, 9 (2020) 83-93.
[15] A.K. Sikalidis, A. Maykish, The Gut Microbiome and Type 2 Diabetes Mellitus: Discussing a Complex Relationship, Biomedicines, 8 (2020).
[16] G. Clarke, K.V. Sandhu, B.T. Griffin, T.G. Dinan, J.F. Cryan, N.P. Hyland, Gut Reactions: Breaking Down Xenobiotic-Microbiome Interactions, Pharmacol Rev, 71 (2019) 198-224.
[17] D. Takahashi, N. Hoshina, Y. Kabumoto, Y. Maeda, A. Suzuki, H. Tanabe, J. Isobe, T. Yamada, K. Muroi, Y. Yanagisawa, A. Nakamura, Y. Fujimura, A. Saeki, M. Ueda, R. Matsumoto, H. Asaoka, J.M. Clarke, Y. Harada, E. Umemoto, N. Komatsu, T. Okada, H. Takayanagi, K. Takeda, M. Tomura, K. Hase, Microbiota-derived butyrate limits the autoimmune response by promoting the differentiation of follicular regulatory T cells, EBioMedicine, 58 (2020) 102913.
[18] A. Wahlström, S.I. Sayin, H.U. Marschall, F. Bäckhed, Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism, Cell Metab, 24 (2016) 41-50.
[19] L. Zhu, W. Wang, T. Xie, J. Zou, T.i. Wei, TGR5 receptor activation attenuates diabetic retinopathy through suppression of RhoA/ROCK signaling, The FASEB Journal, 34 (2020).
[20] C. Rajani, W. Jia, Bile acids and their effects on diabetes, Front Med, 12 (2018) 608-623.
[21] H. Liu, C. Hu, X. Zhang, W. Jia, Role of gut microbiota, bile acids and their cross-talk in the effects of bariatric surgery on obesity and type 2 diabetes, J Diabetes Investig, 9 (2018) 13-20.
[22] T. Vatanen, A.D. Kostic, E. d'Hennezel, H. Siljander, E.A. Franzosa, M. Yassour, R. Kolde, H. Vlamakis, T.D. Arthur, A.M. Hämäläinen, A. Peet, V. Tillmann, R. Uibo, S. Mokurov, N. Dorshakova, J. Ilonen, S.M. Virtanen, S.J. Szabo, J.A. Porter, H. Lähdesmäki, C. Huttenhower, D. Gevers, T.W. Cullen, M. Knip, R.J. Xavier, Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans, Cell, 165 (2016) 842-853.
[23] K.M. Sayed, A.A. Mahmoud, Heat shock protein-70 and hypoxia inducible factor-1α in type 2 diabetes mellitus patients complicated with retinopathy, Acta Ophthalmol, 94 (2016) e361-366.
[24] J. Qi, T. You, J. Li, T. Pan, L. Xiang, Y. Han, L. Zhu, Circulating trimethylamine N-oxide and the risk of cardiovascular diseases: a systematic review and meta-analysis of 11 prospective cohort studies, J Cell Mol Med, 22 (2018) 185-194.
[25] A. Nowiński, M. Ufnal, Trimethylamine N-oxide: A harmful, protective or diagnostic marker in lifestyle diseases?, Nutrition, 46 (2018) 7-12.
[26] S. Loukovaara, N. Piippo, K. Kinnunen, M. Hytti, K. Kaarniranta, A. Kauppinen, NLRP3 inflammasome activation is associated with proliferative diabetic retinopathy, Acta Ophthalmol, 95 (2017) 803-808.
[27] P. Markowiak, K. Śliżewska, Effects of Probiotics, Prebiotics, and Synbiotics on Human Health, Nutrients, 9 (2017).
[28] A.E. Millen, M.W. Sahli, J. Nie, M.J. LaMonte, P.L. Lutsey, B.E. Klein, J.A. Mares, K.J. Meyers, C.A. Andrews, R. Klein, Adequate vitamin D status is associated with the reduced odds of prevalent diabetic retinopathy in African Americans and Caucasians, Cardiovasc Diabetol, 15 (2016) 128.
[29] M.N. Beidokhti, A.K. Jäger, Review of antidiabetic fruits, vegetables, beverages, oils and spices commonly consumed in the diet, J Ethnopharmacol, 201 (2017) 26-41.
[30] M. Haluzík, M. Mráz, Intermittent Fasting and Prevention of Diabetic Retinopathy: Where Do We Go From Here?, Diabetes, 67 (2018) 1745-1747.
[31] L. Zhang, L. Lu, X. Zhong, Y. Yue, Y. Hong, Y. Li, Y. Li, Metformin reduced NLRP3 inflammasome activity in Ox-LDL stimulated macrophages through adenosine monophosphate activated protein kinase and protein phosphatase 2A, Eur J Pharmacol, 852 (2019) 99-106.

Downloads: 4651
Visits: 203398

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.