Siamese Network for Fast Visual Tracking of Rotating Targets
DOI: 10.23977/vcip.2022.010101 | Downloads: 12 | Views: 1580
Author(s)
Yibo Gao 1
Affiliation(s)
1 Guidance Control and Information Perception Laboratory of High Overload Ammunition, Army Artillery and Air Defense Academy of PLA, Hefei, Anhui, 230031, China
Corresponding Author
Yibo GaoABSTRACT
Directional target tracking is an important task in the field of target tracking, which has great application prospects in geography, agriculture and military. The current algorithm for rotating target detection relies on the detection frame after regression and then uses the segmentation mask for further accuracy, which is obviously too cumbersome. In this paper, a scheme of direct generation of directional detection frame (Siamese-ORPN) is proposed. Specifically, improve the alternative box strategy so that the orpn can directly generate a high-quality directional detection box proposal in a low consumption manner. In addition, a top-down feature fusion network is proposed as the backbone of feature extraction and feature fusion, which can obtain substantial benefits from the diversity of visual semantic levels. Siamese-ORPN realizes lightweight and real-time detection, and achieves leading performance on benchmark data sets, including vot2018 (44.6% EAO) and vot2019 (39.6% EAO).
KEYWORDS
Oriented target tracking, feature extraction, RPN, Feature fusionCITE THIS PAPER
Yibo Gao, Siamese Network for Fast Visual Tracking of Rotating Targets. Visual Communications and Image Processing (2022) Vol. 1: 1-7. DOI: http://dx.doi.org/10.23977/vcip.2022.010101.
REFERENCES
[1] A. W. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. Dehghan, and M. Shah. Visual tracking: An experimental survey. IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 7, pp. 1442–1468, Jul. 2014.
[2] M. Danelljan, G. Bhat, F. S. Khan, and M. Felsberg. (2017) ECO: Effificient convolution operators for tracking.in Proc. IEEE Conf. Comput. Vis.Pattern Recognit, pp. 6638–6646.
[3] M. Danelljan, G. Bhat, F. S. Khan, and M. Felsberg. (2019) ATOM: Accurate tracking by overlap maximization.in Proc. IEEE Conf. Comput. Vis. Pattern Recognit, pp. 4660–4669.
[4] K. Dai, D. Wang, H. Lu, C. Sun, and J. Li. (2019) Visual tracking via adaptive spatially-regularized correlation fifilters.in Proc. IEEE Conf. Comput. Vis. Pattern Recognit, pp. 4670–4679.
[5] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. S. Torr. (2016) Fully-convolutional Siamese networks for object tracking.in Proc. Eur. Conf. Comput. Vis. Workshop, pp. 850–865.
[6] B. Li, W. Wu, Q. Wang, F. Zhang, J. Xing, and J. Yan. (2019) SiamRPN++: Evolution of Siamese visual tracking with very deep networks.in Proc. IEEE Conf. Comput. Vis. Pattern Recognit, pp. 4282–4291.
[7] Z. Chen, B. Zhong, G. Li, S. Zhang, and R. Ji. (2020) Siamese box adaptive network for visual tracking.in Proc. IEEE Conf. Comput. Vis. Pattern Recognit, pp. 6668–6677.
[8] R. Yao, G. Lin, S. Xia, J. Zhao, and Y. Zhou. (2020) Video object segmentation and tracking: A survey. ACM Trans. Intell. Syst. Technol., vol. 11, no. 4, pp. 1–47.
[9] Q. Wang, L. Zhang, L. Bertinetto, W. Hu, and P. H. S. Torr. (2019) Fast online object tracking and segmentation: A unifying approach.in Proc. IEEE Conf. Comput. Vis. Pattern Recognit, pp. 1328–1338.
[10] B. Chen and J. K. Tsotsos. (2019) Fast visual object tracking with rotated bounding boxes, arXiv: 1907. 03892.
[11] A. Lukežiˇc, J. Matas, and M. Kristan. (2020) D3S–A discriminative single shot segmentation tracker. in Proc. IEEE Conf. Comput. Vis. Pattern Recognit, pp. 7133–7142.
[12] J. Ma et al. (2018) Arbitrary-oriented scene text detection via rotation proposals. IEEE Trans. Multimedia, vol. 20, no. 11, pp. 3111–3122, Nov.
[13] J. Ding, N. Xue, Y. Long, G. Xia, and Q. Lu. (2019) Learning RoI transformer for oriented object detection in aerial images.in Proc. IEEE Conf. Comput. Vis. Pattern Recognit, pp. 2849–2858.
[14] X. Xie, G. Cheng, J. Wang, X. Yao, and J. Han. (2021) Oriented R-CNN for object detection.in Proc. IEEE Int. Conf. Comput. Vis, pp. 3520–3529.
[15] L. Bertinetto, J. F. Henriques, J. Valmadre, P. H. S. Torr, and A. (2016) Vedaldi. Learning feed-forward one-shot learners, arXiv: 1606. 05233.
[16] T. Y. Lin et al. (2014) Microsoft COCO: Common objects in context.in Proc. Eur. Conf. Comput. Vis, pp. 101–115.
[17] O. Russakovsky et al. (2015) ImageNet large scale visual recognition challenge. Int. J. Comput. Vis., vol. 115, pp. 211–252.
[18] M. Kristan et al. (2018) The sixth visual object tracking VOT2018 challenge results.in Proc. Euro. Conf. Comput. Vis. Workshops, pp. 3–53.
[19] M. Kristan et al. (2019) The seventh visual object tracking VOT2019 challenge results.in Proc. IEEE/CVF Int. Conf. Comput. Vis, pp. 2206–2241.
[20] G. Wang, C. Luo, Z. Xiong, and W. Zeng. (2019) SPM-tracker: Series-parallel matching for real-time visual object tracking.in Proc. IEEE Conf. Comput. Vis. Pattern Recognit, pp. 3643–3652.
[21] Y. Xu, Z. Wang, Z. Li, Y. Yuan, and G. Yu. (2020) SiamFC++: Towards robust and accurate visual tracking with target estimation guidelines.in Proc. AAAI Conf. Artif. Intell, pp. 12549–12556.
[22] G. Bhat, M. Danelljan, L. V. Gool, and R. (2019) Timofte. Learning discriminative model prediction for tracking.in Proc. IEEE Int. Conf. Comput. Vis. pp. 6182–6191.
[23] Z. Fu, Q. Liu, Z. Fu, and Y. Wang. (2021) “STMtrack: Template-free visual tracking with space-time memory networks. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit, pp. 13774–13783.
[24] S. Cheng et al. (2021) Learning to fifilter: Siamese relation network for robust tracking.in Proc. IEEE Conf. Comput. Vis. Pattern Recognit, pp. 4421–4431.
Downloads: | 62 |
---|---|
Visits: | 4053 |
Sponsors, Associates, and Links
-
Power Systems Computation
-
Internet of Things (IoT) and Engineering Applications
-
Computing, Performance and Communication Systems
-
Journal of Artificial Intelligence Practice
-
Advances in Computer, Signals and Systems
-
Journal of Network Computing and Applications
-
Journal of Web Systems and Applications
-
Journal of Electrotechnology, Electrical Engineering and Management
-
Journal of Wireless Sensors and Sensor Networks
-
Journal of Image Processing Theory and Applications
-
Mobile Computing and Networking
-
Vehicle Power and Propulsion
-
Frontiers in Computer Vision and Pattern Recognition
-
Knowledge Discovery and Data Mining Letters
-
Big Data Analysis and Cloud Computing
-
Electrical Insulation and Dielectrics
-
Crypto and Information Security
-
Journal of Neural Information Processing
-
Collaborative and Social Computing
-
International Journal of Network and Communication Technology
-
File and Storage Technologies
-
Frontiers in Genetic and Evolutionary Computation
-
Optical Network Design and Modeling
-
Journal of Virtual Reality and Artificial Intelligence
-
Natural Language Processing and Speech Recognition
-
Journal of High-Voltage
-
Programming Languages and Operating Systems
-
Journal of Systems Analysis and Integration
-
Knowledge Representation and Automated Reasoning
-
Review of Information Display Techniques
-
Data and Knowledge Engineering
-
Journal of Database Systems
-
Journal of Cluster and Grid Computing
-
Cloud and Service-Oriented Computing
-
Journal of Networking, Architecture and Storage
-
Journal of Software Engineering and Metrics
-
Visualization Techniques
-
Journal of Parallel and Distributed Processing
-
Journal of Modeling, Analysis and Simulation
-
Journal of Privacy, Trust and Security
-
Journal of Cognitive Informatics and Cognitive Computing
-
Lecture Notes on Wireless Networks and Communications
-
International Journal of Computer and Communications Security
-
Journal of Multimedia Techniques
-
Automation and Machine Learning
-
Computational Linguistics Letters
-
Journal of Computer Architecture and Design
-
Journal of Ubiquitous and Future Networks