Study of boiling water reactor containment temperature field underwater flooding
DOI: 10.23977/erej.2022.060305 | Downloads: 9 | Views: 839
Author(s)
Jieyi Wang 1
Affiliation(s)
1 College of Mathematics and Physics, University of South China, Hengyang, 421200, Hunan, China
Corresponding Author
Jieyi WangABSTRACT
Nuclear energy, as a clean energy source with high efficiency and low pollution, is receiving more and more attention from human society, and the Fukushima nuclear meltdown in Japan in 2011 has attracted the attention of the academic community. The explosion of the Fukushima nuclear power plant was caused by the flooding of the diesel engine set by seawater, which resulted in the reactor being unable to stop and continue its reaction. The temperature inside the containment continued to rise, and the meltdown occurred due to the combination of high temperature and internal pressure, which exceeded the limit of the bearing capacity of the containment. In this paper, we study the temperature change of the boiling water reactor containment under flooding conditions and conduct an in-depth investigation based on the existing research on the temperature field of boiling water reactor containment, to derive the equation of temperature field change under flooding conditions and conduct numerical simulation on the temperature field change under flooding condition.
KEYWORDS
Flooded state, Fukushima, boiling water reactor, containment, temperature fieldCITE THIS PAPER
Jieyi Wang, Study of boiling water reactor containment temperature field underwater flooding. Environment, Resource and Ecology Journal (2022) Vol. 6: 37-45. DOI: http://dx.doi.org/10.23977/erej.2022.060305.
REFERENCES
[1] Zuo Qin. Modeling and dynamic characterization of boiling water reactor nuclear power plant systems [D]. Zhejiang University, 2013.
[2] Ishikawa, Michio. A Study of the Fukushima Daiichi Nuclear Accident Process [J]. Springer Japan, 2015, 10.1007/978-4-431-55543-8.
[3] Su Jiqiang, Fan Li, Gao Li. A review of heat transfer studies on steam condensation in containment cooling systems [J]. Atomic Energy Science and Technology, 2016, 050(011): 1956-1966.
[4] Zhang S.Y., Yao T.T., Li C.W., et al. Numerical simulation of ablation process of the pressure vessel wall by core melt [J]. Nuclear Technology, 2015, 38(2): 6.
[5] Cheng Xiu, Lai Hongyu, Chen Yong. Research on the principle and application of atmospheric hydrogen concentration monitoring system for Fukushima improved containment [C]// Annual Meeting of the Chinese Nuclear Society. 2017.
[6] Zhou Zhi, Wei Qianglin, Gong Liang, et al. Monte Carlo simulation of containment radiation shielding under severe AP1000 core accident [J]. Energy Research and Management, 2014(1): 3.
[7] Yu Miao. Study on the natural circulation cooling capacity of double containment [D]. Harbin Engineering University, 2015.
[8] Zhang Chunlong, Xiong Xiaomeng, Zhao Jintao, et al. Ultimate bearing capacity analysis of a nuclear power plant containment.
[9] Zhang L. Analysis of factors influencing the ultimate bearing capacity of nuclear power plant containment under high temperature and pressure [D]. Harbin Engineering University, 2014.
Downloads: | 4312 |
---|---|
Visits: | 216848 |
Sponsors, Associates, and Links
-
International Journal of Geological Resources and Geological Engineering
-
Big Geospatial Data and Data Science
-
Solid Earth and Space Physics
-
Environment and Climate Protection
-
Journal of Cartography and Geographic Information Systems
-
Offshore and Polar Engineering
-
Physical and Human Geography
-
Journal of Atmospheric Physics and Atmospheric Environment
-
Trends in Meteorology
-
Journal of Coastal Engineering Research
-
Focus on Plant Protection
-
Toxicology and Health of Environment
-
Geoscience and Remote Sensing
-
Advances in Physical Oceanography
-
Biology, Chemistry, and Geology in Marine
-
Water-Soil, Biological Environment and Energy
-
Geodesy and Geophysics
-
Journal of Structural and Quaternary Geology
-
Journal of Sedimentary Geology
-
International Journal of Polar Social Research and Review