Mitochondrial Transfer and Tumor Cell Immune Evasion: Mechanisms, Clinical Significance, and Research Prospects – A Review
DOI: 10.23977/medsc.2025.060519 | Downloads: 1 | Views: 32
Author(s)
Kai Li 1, Weidong Yang 1, Dongqing Wang 1
Affiliation(s)
1 Department of Urology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
Corresponding Author
Kai LiABSTRACT
Mitochondria, as pivotal organelles involved in cellular energy metabolism and signal transduction, have recently been recognized for their dynamic transfer between cells within the tumor microenvironment. This phenomenon of mitochondrial transfer has emerged as a critical factor contributing to tumor cell immune evasion, a major challenge in effective cancer treatment. Current research reveals complex molecular mechanisms underlying mitochondrial transfer, including tunneling nanotubes, extracellular vesicles, and gap junctions, which facilitate intercellular communication and metabolic reprogramming. These mechanisms modulate immune responses by altering tumor immunogenicity and suppressing anti-tumor immunity, thereby promoting tumor progression and resistance to immunotherapy. Despite advances in understanding the biology of mitochondrial transfer, significant gaps remain in elucidating its precise role in immune escape and identifying therapeutic targets. This review comprehensively summarizes the fundamental processes of mitochondrial transfer and explores their involvement in tumor immune evasion, emphasizing key signaling pathways and molecular mediators. Furthermore, it assesses the impact of mitochondrial transfer on the efficacy of current immunotherapeutic approaches and discusses potential clinical applications aimed at disrupting this process to enhance treatment outcomes. Finally, integrating the latest research findings, we highlight future directions for investigating mitochondrial transfer in tumor immunoregulation and its translational potential, aiming to foster innovative strategies for cancer therapy. This synthesis offers valuable insights into the interplay between mitochondrial dynamics and tumor immunity, underscoring the importance of targeting mitochondrial transfer in overcoming immune resistance.
KEYWORDS
Mitochondrial transfer, tumor cells, immune evasion, tumor microenvironment, immunotherapy, clinical significanceCITE THIS PAPER
Kai Li, Weidong Yang, Dongqing Wang, Mitochondrial Transfer and Tumor Cell Immune Evasion: Mechanisms, Clinical Significance, and Research Prospects – A Review. MEDS Clinical Medicine (2025) Vol. 6: 128-139. DOI: http://dx.doi.org/10.23977/medsc.2025.060519.
REFERENCES
[1] Popov LD. Mitochondria as intracellular signalling organelles. An update. Cell Signal. 109:110794. doi:10.1016/j.cellsig.2023.110794 https://pubmed.ncbi.nlm.nih.gov/37422005/
[2] Mangrulkar SV, Wankhede NL, Kale MB, et al. Mitochondrial Dysfunction as a Signaling Target for Therapeutic Intervention in Major Neurodegenerative Disease. Neurotox Res. 2023;41(6):708-729. doi:10.1007/s12640-023-00647-2 https://pubmed.ncbi.nlm.nih.gov/37162686/
[3] Meng K, Jia H, Hou X, et al. Mitochondrial Dysfunction in Neurodegenerative Diseases: Mechanisms and Corresponding Therapeutic Strategies. Biomedicines. 2025;13(2). Published 2025 Jan 31. doi:10.3390/biomedicines13020327 https://pubmed.ncbi.nlm.nih.gov/40002740/
[4] Guan F, Wu X, Zhou J, et al. Mitochondrial transfer in tunneling nanotubes-a new target for cancer therapy. J Exp Clin Cancer Res. 2024;43(1):147. Published 2024 May 21. doi:10.1186/s13046-024-03069-w https://pubmed.ncbi.nlm.nih.gov/38769583/
[5] Fresquet V, Garcia-Barchino MJ, Larrayoz M, et al. Endogenous Retroelement Activation by Epigenetic Therapy Reverses the Warburg Effect and Elicits Mitochondrial-Mediated Cancer Cell Death. Cancer Discov. 2021;11(5):1268-1285. doi:10.1158/2159-8290.CD-20-1065 https://pubmed.ncbi.nlm.nih.gov/33355179/
[6] Chun S, An J, Kim MS. Mitochondrial Transfer Between Cancer and T Cells: Implications for Immune Evasion. Antioxidants (Basel). 2025;14(8). Published 2025 Aug 18. doi:10.3390/antiox14081008 https://pubmed.ncbi.nlm.nih.gov/40867904/
[7] Liu R, Shan W, Wang Z, et al. Unveiling mitochondrial transfer in tumor immune evasion: mechanisms, challenges, and clinical implications. Front Immunol. 16:1625814. Published 2025 None. doi:10.3389/fimmu.2025.1625814 https://pubmed.ncbi.nlm.nih.gov/40766302/
[8] Chen L, Huang Q, Zhou P. Multimodal cell-cell communication driving CD8+ T cell dysfunction and immune evasion. Front Immunol. 16:1691746. Published 2025 None. doi:10.3389/fimmu.2025.1691746 https://pubmed.ncbi.nlm.nih.gov/41268548/
[9] Cai Q, Cai X, Shubhra QTH. Mitochondrial transfer drives immune evasion in tumor microenvironment. Trends Cancer. 2025;11(5):424-426. doi:10.1016/j.trecan.2025.04.002 https://pubmed.ncbi.nlm.nih.gov/40268608/
[10] Zhang H, Yu X, Ye J, et al. Systematic investigation of mitochondrial transfer between cancer cells and T cells at single-cell resolution. Cancer Cell. 2023;41(10):1788-1802.e10. doi:10.1016/j.ccell.2023.09.003 https://pubmed.ncbi.nlm.nih.gov/37816332/
[11] Zhang L, Zhang W, Li Z, et al. Mitochondria dysfunction in CD8+ T cells as an important contributing factor for cancer development and a potential target for cancer treatment: a review. J Exp Clin Cancer Res. 2022;41(1):227. Published 2022 Jul 21. doi:10.1186/s13046-022-02439-6 https://pubmed.ncbi.nlm.nih.gov/35864520/
[12] Skeie JM, Nishimura DY, Wang CL, Schmidt GA, Aldrich BT, Greiner MA. Mitophagy: An Emerging Target in Ocular Pathology. Invest Ophthalmol Vis Sci. 2021;62(3):22. doi:10.1167/iovs.62.3.22 https://pubmed.ncbi.nlm.nih.gov/33724294/
[13] Zampieri LX, Silva-Almeida C, Rondeau JD, Sonveaux P. Mitochondrial Transfer in Cancer: A Comprehensive Review. Int J Mol Sci. 2021;22(6). Published 2021 Mar 23. doi:10.3390/ijms22063245 https://pubmed.ncbi.nlm.nih.gov/33806730/
[14] Sahinbegovic H, Jelinek T, Hrdinka M, et al. Intercellular Mitochondrial Transfer in the Tumor Microenvironment. Cancers (Basel). 2020;12(7). Published 2020 Jul 4. doi:10.3390/cancers12071787 https://pubmed.ncbi.nlm.nih.gov/32635428/
[15] Todkar K, Chikhi L, Germain M. Mitochondrial interaction with the endosomal compartment in endocytosis and mitochondrial transfer. Mitochondrion. 49:284-288. doi:10.1016/j.mito.2019.05.003 https://pubmed.ncbi.nlm.nih.gov/31100469/
[16] Ratajczak MZ, Thetchinamoorthy K, Wierzbicka D, Konopko A, Ratajczak J, Kucia M. Extracellular microvesicles/exosomes-magic bullets in horizontal transfer between cells of mitochondria and molecules regulating mitochondria activity. Stem Cells. 2025;43(3). doi:10.1093/stmcls/sxae086 https://pubmed.ncbi.nlm.nih.gov/39949038/
[17] Taiko I, Takano C, Hayashida S, Kanemaru K, Miki T. Labeling of mitochondria for detection of intercellular mitochondrial transfer. Methods Cell Biol. 194:1-17. doi:10.1016/bs.mcb.2024.05.001 https://pubmed.ncbi.nlm.nih.gov/40058954/
[18] Guo X, Can C, Liu W, et al. Mitochondrial transfer in hematological malignancies. Biomark Res. 2023;11(1):89. Published 2023 Oct 5. doi:10.1186/s40364-023-00529-x https://pubmed.ncbi.nlm.nih.gov/37798791/
[19] Zhang LY, Xiang YH, Zhang J. [Research Progress of Intercellular Mitochondrial Transfer in the Development of Hematological Malignant Tumors –Review]. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2022;30(1):310-313. doi:10.19746/j.cnki.issn.1009-2137.2022.01.051 https://pubmed.ncbi.nlm.nih.gov/35123645/
[20] Zhang Y, Wei M, Wu T, Han J. Neurons fuel cancer metastasis through mitochondrial transfer. Mol Ther. 2025;33(8):3462-3463. doi:10.1016/j.ymthe.2025.07.025 https://pubmed.ncbi.nlm.nih.gov/40730184/
[21] Kuo FC, Tsai HY, Cheng BL, et al. Endothelial Mitochondria Transfer to Melanoma Induces M2-Type Macrophage Polarization and Promotes Tumor Growth by the Nrf2/HO-1-Mediated Pathway. Int J Mol Sci. 2024;25(3). Published 2024 Feb 3. doi:10.3390/ijms25031857 https://pubmed.ncbi.nlm.nih.gov/38339136/
[22] Chen H, Chen X, Zhou ZH, et al. Mesenchymal stromal cell-mediated mitochondrial transfer unveils new frontiers in disease therapy. Stem Cell Res Ther. 2025;16(1):546. Published 2025 Oct 8. doi:10.1186/s13287-025-04675-x https://pubmed.ncbi.nlm.nih.gov/41063290/
[23] Huang T, Lin R, Su Y, et al. Efficient intervention for pulmonary fibrosis via mitochondrial transfer promoted by mitochondrial biogenesis. Nat Commun. 2023;14(1):5781. Published 2023 Sep 18. doi:10.1038/s41467-023-41529-7 https://pubmed.ncbi.nlm.nih.gov/37723135/
[24] Chen J, Xie Z, Zhou H, et al. Mitochondria Transfer in Mesenchymal Stem Cells: Unraveling the Mechanism and Therapeutic Potential. Curr Stem Cell Res Ther. Published online Apr 25,2025. doi:10.2174/011574888X362739250416153254 https://pubmed.ncbi.nlm.nih.gov/40289989/
[25] Geisler D, Almutairi F, John I, et al. Malignant juxtaglomerular cell tumor. Urol Case Rep. 45:102176. Published 2022 Nov. doi:10.1016/j.eucr.2022.102176 https://pubmed.ncbi.nlm.nih.gov/35968528/
[26] Chen T, Liu N. Barriers and opportunities: Intercellular mitochondrial transfer for cardiac protection-Delivery by extracellular vesicles. Front Cardiovasc Med. 9:1024481. Published 2022 None. doi:10.3389/fcvm.2022.1024481 https://pubmed.ncbi.nlm.nih.gov/36684572/
[27] Guo Y, Fu T, Cheng Y, et al. Mechanisms of electroacupuncture-induced neuroprotection in acute stroke rats: the role of astrocyte-mediated mitochondrial transfer. Cell Commun Signal. 2025;23(1):316. Published 2025 Jul 1. doi:10.1186/s12964-025-02287-9 https://pubmed.ncbi.nlm.nih.gov/40598228/
[28] Sun J, Lo HTJ, Fan L, et al. High-efficiency quantitative control of mitochondrial transfer based on droplet microfluidics and its application on muscle regeneration. Sci Adv. 2022;8(33):eabp9245. doi:10.1126/sciadv.abp9245 https://pubmed.ncbi.nlm.nih.gov/35977014/
[29] Chen J, Fu CY, Shen G, et al. Macrophages induce cardiomyocyte ferroptosis via mitochondrial transfer. Free Radic Biol Med. 190:1-14. doi:10.1016/j.freeradbiomed.2022.07.015 https://pubmed.ncbi.nlm.nih.gov/35933052/
[30] Wang K, Zhou L, Mao H, Liu J, Chen Z, Zhang L. Intercellular mitochondrial transfer alleviates pyroptosis in dental pulp damage. Cell Prolif. 2023;56(9):e13442. doi:10.1111/cpr.13442 https://pubmed.ncbi.nlm.nih.gov/37086012/
[31] Sakano Y, Sakano K, Hurrell BP, et al. SIRPα engagement regulates ILC2 effector function and alleviates airway hyperreactivity via modulating energy metabolism. Cell Mol Immunol. 2024;21(10):1158-1174. doi:10.1038/s41423-024-01208-z https://pubmed.ncbi.nlm.nih.gov/39160226/
[32] Needs HI, Glover E, Pereira GC, et al. Rescue of mitochondrial import failure by intercellular organellar transfer. Nat Commun. 2024;15(1):988. Published 2024 Feb 2. doi:10.1038/s41467-024-45283-2 https://pubmed.ncbi.nlm.nih.gov/38307874/
[33] Irwin RM, Thomas MA, Fahey MJ, Mayán MD, Smyth JW, Delco ML. Connexin 43 Regulates Intercellular Mitochondrial Transfer from Human Mesenchymal Stromal Cells to Chondrocytes. bioRxiv. Published 2024 Mar 20. doi:10.1101/2024.03.18.585552 https://pubmed.ncbi.nlm.nih.gov/38562828/
[34] Feng T, Xu Q, Wang S, Hou D, Wu X. Interplay between tunneling nanotubes and Wnt Signaling: Insights into cytoskeletal regulation and therapeutic potential. Biochem Biophys Rep. 43:102065. Published 2025 Sep. doi:10.1016/j.bbrep.2025.102065 https://pubmed.ncbi.nlm.nih.gov/40510685/
[35] Mori D, Miyagawa S, Kawamura T, et al. Mitochondrial Transfer Induced by Adipose-Derived Mesenchymal Stem Cell Transplantation Improves Cardiac Function in Rat Models of Ischemic Cardiomyopathy. Cell Transplant. 32:9636897221148457. doi:10.1177/09636897221148457 https://pubmed.ncbi.nlm.nih.gov/36624995/
[36] Montgomery MK. Mitochondrial Dysfunction and Diabetes: Is Mitochondrial Transfer a Friend or Foe? Biology (Basel). 2019;8(2). Published 2019 May 11. doi:10.3390/biology8020033 https://pubmed.ncbi.nlm.nih.gov/31083560/
[37] Marlein CR, Piddock RE, Mistry JJ, et al. CD38-Driven Mitochondrial Trafficking Promotes Bioenergetic Plasticity in Multiple Myeloma. Cancer Res. 2019;79(9):2285-2297. doi:10.1158/0008-5472.CAN-18-0773 https://pubmed.ncbi.nlm.nih.gov/30622116/
[38] Elmentaite R, Teichmann SA, Madissoon E. Studying immune to non-immune cell cross-talk using single-cell technologies. Curr Opin Syst Biol. 18:87-94. doi:10.1016/j.coisb.2019.10.005 https://pubmed.ncbi.nlm.nih.gov/32984660/
[39] Jain R, Begum N, Tryphena KP, et al. Inter and intracellular mitochondrial transfer: Future of mitochondrial transplant therapy in Parkinson’s disease. Biomed Pharmacother. 159:114268. doi:10.1016/j.biopha.2023.114268 https://pubmed.ncbi.nlm.nih.gov/36682243/
[40] Guan B, Liu Y, Xie B, et al. Mitochondrial genome transfer drives metabolic reprogramming in adjacent colonic epithelial cells promoting TGFβ1-mediated tumor progression. Nat Commun. 2024;15(1):3653. Published 2024 Apr 30. doi:10.1038/s41467-024-48100-y https://pubmed.ncbi.nlm.nih.gov/38688896/
[41] Cangkrama M, Liu H, Wu X, et al. MIRO2-mediated mitochondrial transfer from cancer cells induces cancer-associated fibroblast differentiation. Nat Cancer. 2025;6(10):1714-1733. doi:10.1038/s43018-025-01038-6 https://pubmed.ncbi.nlm.nih.gov/40877413/
[42] Zhang L, Wang X, Nepovimova E, Wu Q, Wu W, Kuca K. Deoxynivalenol upregulates hypoxia-inducible factor-1α to promote an “immune evasion” process by activating STAT3 signaling. Food Chem Toxicol. 179:113975. doi:10.1016/j.fct.2023.113975 https://pubmed.ncbi.nlm.nih.gov/37517547/
[43] Zhao S, Hou J, Deng L, et al. Lactate-Modulating Nanozyme-Mediated Mitochondrial Respiration Block for Tumor Immunosuppression Remodeling. Angew Chem Int Ed Engl. 2025;64(17):e202422203. doi:10.1002/anie.202422203 https://pubmed.ncbi.nlm.nih.gov/39932860/
[44] Weinhäuser I, Pereira-Martins DA, Almeida LY, et al. M2 macrophages drive leukemic transformation by imposing resistance to phagocytosis and improving mitochondrial metabolism. Sci Adv. 2023;9(15):eadf8522. doi:10.1126/sciadv.adf8522 https://pubmed.ncbi.nlm.nih.gov/37058562/
[45] Boyineni J, Wood JM, Ravindra A, et al. Prospective Approach to Deciphering the Impact of Intercellular Mitochondrial Transfer from Human Neural Stem Cells and Brain Tumor-Initiating Cells to Neighboring Astrocytes. Cells. 2024;13(3). Published 2024 Jan 23. doi:10.3390/cells13030204 https://pubmed.ncbi.nlm.nih.gov/38334595/
[46] Ikeda H, Kawase K, Nishi T, et al. Immune evasion through mitochondrial transfer in the tumour microenvironment. Nature. 2025;638(8049):225-236. doi:10.1038/s41586-024-08439-0 https://pubmed.ncbi.nlm.nih.gov/39843734/
[47] Diaz-Meco MT, Linares JF, Moscat J. Hijacking the powerhouse: Mitochondrial transfer and mitophagy as emerging mechanisms of immune evasion. Mol Cell. 2025;85(7):1258-1259. doi:10.1016/j.molcel.2025.02.026 https://pubmed.ncbi.nlm.nih.gov/40185077/
[48] Zhan Q, Kuang Y, Chen X, et al. Photo-generating Type-I ROS and aryl radicals by mitochondrial-targeting oxime-ester photogenerator for pyroptosis-mediated anti-hypoxia photoimmunotherapy. Bioact Mater. 47:327-342. Published 2025 May. doi:10.1016/j.bioactmat.2025.01.032 https://pubmed.ncbi.nlm.nih.gov/40026820/
[49] Baldwin JG, Heuser-Loy C, Saha T, et al. Intercellular nanotube-mediated mitochondrial transfer enhances T cell metabolic fitness and antitumor efficacy. Cell. 2024;187(23):6614-6630.e21. doi:10.1016/j.cell.2024.08.029 https://pubmed.ncbi.nlm.nih.gov/39276774/
[50] Qiao X, Huang N, Meng W, et al. Beyond mitochondrial transfer, cell fusion rescues metabolic dysfunction and boosts malignancy in adenoid cystic carcinoma. Cell Rep. 2024;43(9):114652. doi:10.1016/j.celrep.2024.114652 https://pubmed.ncbi.nlm.nih.gov/39217612/
[51] Tumor Cells Alter NK Cell Surface Topology for Immune Evasion. Cancer Discov. 2023;13(6):1283. doi:10.1158/2159-8290.CD-RW2023-052 https://pubmed.ncbi.nlm.nih.gov/37026696/
[52] Lai P, Liu L, Bancaro N, et al. Mitochondrial DNA released by senescent tumor cells enhances PMN-MDSC-driven immunosuppression through the cGAS-STING pathway. Immunity. 2025;58(4):811-825.e7. doi:10.1016/j.immuni.2025.03.005 https://pubmed.ncbi.nlm.nih.gov/40203808/
[53] Wang J, Katsaros D, Wang Z, et al. Mitochondrial tRNA fragment, mt-tRF-Tyr-GTA-001 (tRF-21-X3OJI8EWB), in breast cancer and its potential clinical implications. Breast Cancer Res Treat. 2025;211(3):675-685. doi:10.1007/s10549-025-07682-x https://pubmed.ncbi.nlm.nih.gov/40102335/
[54] Mi Y, Li Q, Liu B, et al. Ubiquitous mitochondrial creatine kinase promotes the progression of gastric cancer through a JNK-MAPK/JUN/HK2 axis regulated glycolysis. Gastric Cancer. 2023;26(1):69-81. doi:10.1007/s10120-022-01340-7 https://pubmed.ncbi.nlm.nih.gov/36114400/
[55] Abdel-Aziz AK. OXPHOS mediators in acute myeloid leukemia patients: Prognostic biomarkers and therapeutic targets for personalized medicine. World J Surg Oncol. 2024;22(1):298. Published 2024 Nov 12. doi:10.1186/s12957-024-03581-5 https://pubmed.ncbi.nlm.nih.gov/39533394/
[56] Zou K, Gao P, Xu X, Zhang W, Zeng Z. Upregulation of NDUFAF2 in Lung Adenocarcinoma Is a Novel Independent Prognostic Biomarker. Comput Math Methods Med. 2023:2912968. Published 2023 None. doi:10.1155/2023/2912968 https://pubmed.ncbi.nlm.nih.gov/36703939/
[57] Zhang Q, Liu W, Jiang L, et al. Real-time monitoring of abnormal mitochondrial viscosity in glioblastoma with a novel mitochondria-targeting fluorescent probe. Analyst. 2024;149(10):2956-2965. Published 2024 May 13. doi:10.1039/d4an00226a https://pubmed.ncbi.nlm.nih.gov/38597984/
[58] Yuan M, Qin H, Wang Y, Wang M, Liu H, Xu K. Mitochondria-targeted fluorescent probes based on coumarin-hemicyanine for viscosity changes and their applications in cells and mice. Spectrochim Acta A Mol Biomol Spectrosc. 325:125105. doi:10.1016/j.saa.2024.125105 https://pubmed.ncbi.nlm.nih.gov/39276469/
[59] Saha T, Dash C, Jayabalan R, et al. Intercellular nanotubes mediate mitochondrial trafficking between cancer and immune cells. Nat Nanotechnol. 2022;17(1):98-106. doi:10.1038/s41565-021-01000-4 https://pubmed.ncbi.nlm.nih.gov/34795441/
[60] Liu B, Chen J, Cui W. Intercellular Nanotube Mitochondrial Transplantation Strategy Mediating T Cell “Supercharging”. Research (Wash D C). 8:0927. Published 2025 None. doi:10.34133/research.0927 https://pubmed.ncbi.nlm.nih.gov/41035819/
[61] Baldari CT. Nanotube-mediated mitochondrial transfer: power to the T cells! Trends Immunol. 2024;45(12):917-919. doi:10.1016/j.it.2024.11.001 https://pubmed.ncbi.nlm.nih.gov/39572338/
[62] Cruz-Gregorio A, Aranda-Rivera AK, Amador-Martinez I, Maycotte P. Mitochondrial transplantation strategies in multifaceted induction of cancer cell death. Life Sci. 332:122098. doi:10.1016/j.lfs.2023.122098 https://pubmed.ncbi.nlm.nih.gov/37734433/
[63] Soukar J, Singh KA, Aviles A, et al. Nanomaterial-induced mitochondrial biogenesis enhances intercellular mitochondrial transfer efficiency. Proc Natl Acad Sci U S A. 2025;122(43):e2505237122. doi:10.1073/pnas.2505237122 https://pubmed.ncbi.nlm.nih.gov/41134634/
[64] Borcherding N, Brestoff JR. The power and potential of mitochondria transfer. Nature. 2023;623(7986):283-291. doi:10.1038/s41586-023-06537-z https://pubmed.ncbi.nlm.nih.gov/37938702/
[65] Wawi MJ, Mahler C, Inguimbert N, Marder TB, Ribou AC. A new mitochondrial probe combining pyrene and a triphenylphosphonium salt for cellular oxygen and free radical detection via fluorescence lifetime measurements. Free Radic Res. 2022 Mar-Apr;56(3-4):258-272. doi:10.1080/10715762.2022.2077202 https://pubmed.ncbi.nlm.nih.gov/35772434/
[66] Ishino T, Inutsuka Y, Ikeda H, Togashi Y. Mitochondrial transfer at the crossroads of cancer, stromal, and immune cells. Trends Cell Biol. Published online Nov 15,2025. doi:10.1016/j.tcb.2025.10.004 https://pubmed.ncbi.nlm.nih.gov/41242932/
[67] Wu Y, Liu Q, Xiang W, Fu P. The immunosuppressive microenvironment modulated by glioma-associated mesenchymal stem cells: Current status and potential strategies. Biochim Biophys Acta Rev Cancer. 2025;1880(5):189410. doi:10.1016/j.bbcan.2025.189410 https://pubmed.ncbi.nlm.nih.gov/40780462/
[68] Wang C, Xie C. Unveiling the power of mitochondrial transfer in cancer progression: a perspective in ovarian cancer. J Ovarian Res. 2024;17(1):233. Published 2024 Nov 23. doi:10.1186/s13048-024-01560-8 https://pubmed.ncbi.nlm.nih.gov/39580453/
| Downloads: | 10098 |
|---|---|
| Visits: | 692847 |
Sponsors, Associates, and Links
-
Journal of Neurobiology and Genetics
-
Medical Imaging and Nuclear Medicine
-
Bacterial Genetics and Ecology
-
Transactions on Cancer
-
Journal of Biophysics and Ecology
-
Journal of Animal Science and Veterinary
-
Academic Journal of Biochemistry and Molecular Biology
-
Transactions on Cell and Developmental Biology
-
Rehabilitation Engineering & Assistive Technology
-
Orthopaedics and Sports Medicine
-
Hematology and Stem Cell
-
Journal of Intelligent Informatics and Biomedical Engineering
-
MEDS Basic Medicine
-
MEDS Stomatology
-
MEDS Public Health and Preventive Medicine
-
MEDS Chinese Medicine
-
Journal of Enzyme Engineering
-
Advances in Industrial Pharmacy and Pharmaceutical Sciences
-
Bacteriology and Microbiology
-
Advances in Physiology and Pathophysiology
-
Journal of Vision and Ophthalmology
-
Frontiers of Obstetrics and Gynecology
-
Digestive Disease and Diabetes
-
Advances in Immunology and Vaccines
-
Nanomedicine and Drug Delivery
-
Cardiology and Vascular System
-
Pediatrics and Child Health
-
Journal of Reproductive Medicine and Contraception
-
Journal of Respiratory and Lung Disease
-
Journal of Bioinformatics and Biomedicine

Download as PDF