Research Progress on Modified-Titanium Dioxide Electron Transport Layers in Perovskite Solar Cells
DOI: 10.23977/mpcr.2024.040112 | Downloads: 2 | Views: 215
Author(s)
Tianjing Li 1, Peining Yang 1, Ying Wang 1, Ting Yan 1
Affiliation(s)
1 College of Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China
Corresponding Author
Tianjing LiABSTRACT
Perovskite solar cells (PSCs) have emerged as the most promising solar cells due to their high efficiency and environmentally friendly characteristics. Additionally, titanium dioxide (TiO2), with its excellent properties, has become the optimal choice for the electron transport layer (ETL) in perovskite devices. However, issues such as energy level mismatch between TiO2 and perovskite light-absorbing materials have limited the efficiency of these devices. Therefore, this review primarily introduces the application of TiO2 in PSCs and discusses the use of modified TiO2 as ETL in perovskite devices. Finally, the existing problems and future research directions of TiO2 in PSCs are proposed.
KEYWORDS
Perovskite solar cells (PSCs), Titanium dioxide (TiO2), Doped, ModifiedCITE THIS PAPER
Tianjing Li, Peining Yang, Ying Wang, Ting Yan, Research Progress on Modified-Titanium Dioxide Electron Transport Layers in Perovskite Solar Cells. Modern Physical Chemistry Research (2024) Vol. 4: 88-92. DOI: http://dx.doi.org/10.23977/mpcr.2024.040112.
REFERENCES
[1] Both J, Fülöp A P, Szabó G S, et al. Effect of the Preparation Method on the Properties of Eugenol-Doped Titanium Dioxide (TiO2) Sol-Gel Coating on Titanium (Ti) Substrates[J]. Gels, 2023, 9(8): 668.
[2] Kang M, Kim S W, Park H Y.Optical properties of TiO2 thin films with crystal structure [J]. Journal of Physics and Chemistry of Solids, 2018, 123: 266-270.
[3] S. Ramalingam. Synthesis of Nanosized Titanium Dioxide (TiO2) by Sol-Gel Method [J]. International Journal of Innovative Technology and Exploring Engineering, 2019, 9(252): 732-735.
[4] Maruyama T, Arai S. Titanium dioxide thin films prepared by chemical vapor deposition [J]. Solar energy materials and solar cells, 1992, 26(4): 323-329.
[5] GurakarS, OtH, Horzum S, et al. Variation of structural and optical properties of TiO2 films prepared by DC magnetron sputtering method with annealing temperature[J]. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2020, 262(1): 114782.
[6] Xiao G, Shi C, Zhang Z, et al. Short-Length and HighiDensity TiO2 Nanorod Arrays for the Efficient Charge Separation Interface in Perovskite Solar Cells [J]. Journal of Solid State Chemistry, 2017, 249(23): 169-173.
[7] Yella A, Heiniger L P, Gao P, et al. Nanocrystalline Rutile Electron Extraction Layer Enables Low-Temperature Solution-Processed Perovskite Photovoltaics with 13.7% Efficiency [J]. Nano Letters, 2014, 14(5): 2591-2596.
[8] Shahiduzzaman M, Sakuma T, Kaneko T, et al. Oblique Electrostatic Inkjet-Deposited TiO2 Electron Transport Layers for Efficient Planar Perovskite Solar Cells[J]. Sci Rep, 2019, 9(1): 19494.
[9] Wang J, Ball J, Barea E, et al. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells[J]. Nano letters, 2013, 14(2): 724-730.
[10] Psc S, Bett A J, Winkler K, et al. Novel Low-Temperature Process for Perovskite Solar Cells with a Mesoporous TiO2 Scaffold[J]. Acs Applied Materials &Interfaces, 2017, 9(36): 113-120.
[11] Li X, Dai S M, Zhu P, et al. Efficient Perovskite Solar Cells Depending on TiO2 Nanorod Arrays[J]. ACS Applied Materials Interfaces, 2016, 8(33): 21358-21365.
[12] Yuchi Z, Dmitri S, Kilin. Computational modeling of wet TiO2 (001) anatase surfaces functionalized by transition metal doping [J]. International Journal of Quantum Chemistry, 2012, 112(24).
[13] Zhou H, Chen Q, Li G, et al. Interface Engineering of Highly Efficient Perovskite Solar Cells[J]. Science, 2014, 345(6196): 542-546.
[14] Gao X X, Ge Q Q, Xue D J, et al. Tuning the Fermi-Level of TiO2 Mesoporous Layer by Lanthanum Doping Towards Efficient Perovskite Solar Cells[J]. Nanoscale, 2016, 8(38): 16881-16885.
[15] LIU D, LI S, ZHANG P, et al. Efficient planar heterojunction perovskite solar cells with Lidoped compact TiO2 layer [J]. Nano Energy, 2017, 31: 462-468.
[16] Sidhik S, Esparza D, Carriles R, er al. Improving the optoelectronic properties of mesoporous TiO2 by cobalt doping for high-performance hysteresis-free perovskite solar cells[J]. Mater Interfaces, 2018, 10(32): 3571-3580.
[17] Wang S, Liu B, Zhu Y, et al. Enhanced performance of TiO2-based perovskite solar cells with Ru-doped TiO2 electron transport layer [J]. Solar Energy, 2018, 169(13): 335-342.
[18] CHEN S-H, CHAN S-H, LIN Y-T, et al. Enhanced power conversion efficiency of perovskite solar cells based on mesoscopic Ag-doped TiO2 electron transport layer [J]. Applied Surface Science, 2019, 469(22): 18-26.
[19] Liu X, Wu Z, Zhang Y, et al. Low temperature Zn-doped TiO2 as electron transport layer for 19% efficient planar perovskite solar cells [J]. Applied Surface Science, 2019, 471(12): 28-35.
[20] Xu R, Li Y, Feng S, et al. Enhanced performance of planar perovskite solar cells using Cedoped TiO2 as electron transport layer [J]. Journal of Materials Science, 2020, 55(14): 5681-5689.
[21] Sanehira Y, Shibayama N, Numata Y, et al. Low-temperature synthesized Nb-doped TiO2 electron transport layer enabling high-efficiency perovskite solar cells by band alignment tuning [J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15175–15182.
Downloads: | 559 |
---|---|
Visits: | 23378 |
Sponsors, Associates, and Links
-
Forging and Forming
-
Composites and Nano Engineering
-
Journal of Materials, Processing and Design
-
Metallic foams
-
Smart Structures, Materials and Systems
-
Chemistry and Physics of Polymers
-
Analytical Chemistry: A Journal
-
Inorganic Chemistry: A Journal
-
Organic Chemistry: A Journal
-
Progress in Materials Chemistry and Physics
-
Transactions on Industrial Catalysis
-
Fuels and Combustion
-
Casting, Welding and Solidification
-
Journal of Membrane Technology
-
Journal of Heat Treatment and Surface Engineering
-
Trends in Biochemical Engineering
-
Ceramic and Glass Technology
-
Transactions on Metals and Alloys
-
High Performance Structures and Materials
-
Rheology Letters
-
Plasticity Frontiers
-
Corrosion and Wear of Materials
-
Fluids, Heat and Mass Transfer
-
International Journal of Geochemistry
-
Diamond and Carbon Materials
-
Advances in Magnetism and Magnetic Materials
-
Advances in Fuel Cell
-
Journal of Biomaterials and Biomechanics