Education, Science, Technology, Innovation and Life
Open Access
Sign In

Focused-Laguerre-Gaussian 3D-Trapping and Spanner at Low Numerical Aperture

Download as PDF

DOI: 10.23977/jemm.2017.21004 | Downloads: 27 | Views: 3677

Author(s)

Pengcheng Peng 1, Xintong Chen 1, Weizhu Chen 1, Mingyuan Xie 1,2, Fuli Zhao 1

Affiliation(s)

1 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, China
2 School of Information Technology, Beijing Institute of Technology, Zhuhai, Zhuhai, 519088, China

Corresponding Author

Fuli Zhao

ABSTRACT

Stable 3D micromanipulation by light requires that gradient force overcome axial scattering force introduced by an objective lens. Although high numerical aperture (NA) objective lenses in conventional optical tweezers could match the requirement, the dramatic limited axial working range and a narrow view field draw back the application seriously. With purpose to improve the application of micromanipulation, we succeed in the three dimensional (3D) trapping of polystyrene microspheres with a low-numerical-aperture (NA=0.40) objective releasing a long working distance (WD=5.89mm) by utilizing the Laguerre-Gaussian beams. A series of rotating manipulation through modulating the asymmetry of Laguerre-Gaussian beams are presented. This work offers an extended axial trapping range for 3D manipulation and a delicate hand-actuated rotating system for optical manipulation.

KEYWORDS

3D-Trapping, Long Axial Trapping, Optical Spanner.

CITE THIS PAPER

Pengcheng, P. , Xintong, C. , Weizhu, C. , Mingyuan, Xie. , Fuli Z. Focused-Laguerre-Gaussian 3D-Trapping and Spanner at Low Numerical Aperture. Journal of Engineering Mechanics and Machinery (2017) 2: 19-26.

REFERENCES

[1] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and Steven Chu. (1986) Observation of a Single-beam Gradient Force Optical Trap for Dielectric Particles. Optics Letters, 11,5.
[2] Jeffrey R. Moffitt, Yann R. Chemla, Steven B. Smith, and Carlos Bustamante. (2008) Recent Advances in Optical Tweezers. Annu. Rev. Biochemistry, 77, 205-28.
[3] T Cizmar, L C Davila Romero, K Dholakia, and D L Andrews. (2010) Multiple Optical Trapping and Binding:
New Routes to Self-assembly. J. Phys. B: At. Mol. Opt. Phys., 43, 102001.
[4] Mike Woerdemann, Christina Alpmann, Michael Esseling, and Cornelia Denz. (2013) Advanced Optical Trapping by Complex Beam Shaping. Laser Photonics Rev., 7, 6, 839-854.
[5] Timo A. Nieminen, Nathaniel du Preez-Wilkinson, Alexander B. Stilgoe, Vincent L.Y. Loke, Ann A.M. Bui, HalinaRubinsztein-Dunlop. (2014) Optical Tweezers: Theory and Modelling. Journal of Quantitative Spectroscopy &Radiative Transfer, 146, 59-80.
[6] Yann R. Chemla. (2016) Review High-Resolution, Hybrid Optical Trapping Methods, and Their Application to Nucleic Acid Processing Proteins. Biopolymers, 105, 10.
[7] David G. Grier. (2003) A Revolution in Optical Manipulation.Nature, 424, 14.
[8] A. Ashkin, J. M. Dziedzic & T. Yamane. (1987) Optical Trapping and Manipulation of Single Cells Using Infrared Laser Beams. Nature, 330, 24-31.
[9] Samuel Yehoshua, Russell Pollari, and Joshua N. Milstein. (2015) Axial Optical Traps: a New Direction for Optical Tweezers. Biophysical Journal, 108, 2759-2766.
[10] Alexander Jesacher, Severin Furhapter, Christian Maurer, Stefan Bernet, and Monika Ritsch-Marte. (2006) Holograhic Optical Tweezers for Object Manipulations at an Air-Liquid Surface. Optics Express, 14, 13.
[11] R Dasgupta, S Ahlawat and P K Gupta. (2007) Trapping of Micron-Sized Objects at A Liquid-Air Interface. Journal of Optics A: Pure and Applied Optics, 9, 189-195.
[12] Ming Lei, Ze Li, Shaohui Yan, Baoli Yao, Dan Dan, Yujiao Qi, JiaQian, Yanlong Yang, PengGao, Tong Ye. (2013) Long-Distance Axial Trapping with Focused Annular Laser Beams.Plos One, 8, 3.
[13] Yareni A. Ayala, Alejandro V. Arzola, and Karen Volke-Sepulveda. (2016) 3D Micromanipulation at Low Numerical Aperture with a Single Light Beam: the Focused-Bessel Trap. Optics Letters, 41, 3.
[14] RaktimDasgupta, Ravi Shanker Verma, SunitaAhlawat, Deepa Chaturvedi, and Pradeep Kumar Gupta.(2011) Long-Distance Axial Trapping with Laguerre-Gaussian Beams. Applied Optics, 50, 10.
[15] Yih-Fan Chen, J. N. Milstein, and Jens-Christian Meiners. (2010) Protein-Mediated DNA Loop Formation and Breakdown in a Fluctuating Environment.Physical Review Letters, 104, 258103.
[16] BhanuNeupane, Fang Chen, Wei Sun, Daniel T. Chiu, and Gufeng Wang. (2013) Tuning Donut Profile for Spatial Resolution in Stimulated Emission Depletion Microscopy. Review of Scientific Instruments, 84, 043701.
[17] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman. (1992) Orbital Angular Momentum of Light and the Transformation of  Laguerre-Gaussian Laser Modes. Physical Review A, 45, 11.
[18] N. B. Simpson, D. Mcgloin, K. Dholakia, L. Allen and M. J. Padgett. (1998) Optical Tweezers with Increased Axial Trapping Efficiency. Journal of Modern Optics, 45, 9.
[19] Jennifer E. Curtis and David G. Grier. (2003) Structure of Optical Vortices. Phys. Rev. Letter. 90, 133901.
[20] Robert M. Simmons, Jeffrey T. Finer, Steven Chu, and James A. Spudich. (1996) Quantitative Measurements of Force and Displacement Using an Optical Trap. Biophysical Journal, 70, 1813-1822.
[21] Cathering M. Herne, Kristina M. Capzzi, Emily Sobel, and Ryan T.Kropas. (2015) Rotation of Large Asymmetrical Absorbing Objects by Laguerre-Gaussian Beams. OpticsLetters, 40, 17.
[22] Alexey A. Kovalev, Victor V. Korlyar, and Alexey P. Porfirev. (2016) Optical Trapping and Moving of Microparticles by Using Asymmetrical Laguerre-Gaussian Beams. Optics Letters, 41, 11.

All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.