Education, Science, Technology, Innovation and Life
Open Access
Sign In

New advances in the application of sodium-glucose cotransporter-2 inhibitors in multisystem diseases

Download as PDF

DOI: 10.23977/medbm.2023.010203 | Downloads: 13 | Views: 433

Author(s)

Fanxing Zhao 1, Ni Jia 2, Xiaofen Mu 1

Affiliation(s)

1 Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
2 Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712000, China

Corresponding Author

Ni Jia

ABSTRACT

In recent years, the newly marketed sodium-glucose co-transporter 2 inhibitor (SGLT-2i) has received extensive attention, and has gradually been widely used in clinical practice because of its significant hypoglycemic effect. In addition to hypoglycemic effects, its obvious cardiovascular benefits and renal protection mechanisms, as well as its effects on weight loss, lowering blood uric acid, lowering blood pressure, and regulating blood lipids, have become the focus of clinical research. This article reviews the latest research and application progress of SGLT-2i in endocrine and metabolic diseases, circulatory system diseases, and tumor diseases.

KEYWORDS

Sodium-glucose cotransporter-2 inhibitor; type 2 diabetes; clinical application

CITE THIS PAPER

Fanxing Zhao, Ni Jia, Xiaofen Mu, New advances in the application of sodium-glucose cotransporter-2 inhibitors in multisystem diseases. MEDS Basic Medicine (2023) Vol. 1: 13-20. DOI: http://dx.doi.org/10.23977/medbm.2023.010203.

REFERENCES

[1] Wang Ling, Ren Yuezhong. Research progress in clinical application of new hypoglycemic drugs sodium-glucose cotransporter 2 inhibitor[J]. Zhejiang Medicine, 2021, 43(16): 1799-1804. 
[2] Vallon V, Thomson Sc. Targeting renal glucose reabsorption to treat hyperglycaemia:the pleiotropic effects of SGLT2 inhibition[J]. Diabetologia, 2017, 60(2):215-225. 
[3] Defronzo Ra. From the triumvirate to the ominous octet:a new paradigm for the treatment of type 2 diabetes mellitus [J]. Diabetes, 2009, 58(4):773-795. 
[4] Abdul-Ghani Ma, Defronzo Ra. Lowering plasma glucose concentration by inhibiting renal sodium-glucose cotransport [J]. Journal of Internal Medicine, 2014, 276(4): 352-363. 
[5] Ji Linong, Guo Lixin, Guo Xiaohui, etc. Chinese expert advice on the rational clinical application of sodium-glucose co-transporter 2 (SGLT-2) inhibitors [J]. Chinese Journal of Diabetes, 2016, 10(12): 865-870. 
[6] De Nicola L, Gabbai Fb, Liberti Me, et al. Sodium/glucose cotransporter 2 inhibitors and prevention of diabetic nephropathy:targeting the renal tubule in diabetes[J]. Am J Kidney Dis, 2014, 64(1):16. 
[7] Kowalski A, Krikorian A, Lerma E V. Dyslipidemia in chronic kidney disease [J]. Disease-a-Month, 2015, 61(9): 396. 
[8] Chen Lijia, Mao Nan. The mechanism of SGLT2 inhibitor-induced autophagy in podocytes of diabetic nephropathy rats by regulating TLR pathway [J]. Journal of Immunology, 2021, 37(10):868-874. 
[9] Zhang Zhiyong, Li Mingxu, Yu Hai, Xiao Fenglin, Xuan Fang, Zhao Yixin. Clinical observation of 84 cases of diabetic nephropathy with Dapagliflozin [J]. Journal of Second Military Medical University, 2021, 42(09):1062-1066. 
[10] You Xuena. Efficacy of empagliflozin in the treatment of diabetic nephropathy and its influence on renal function of patients [J]. China Practical Medicine, 2021, 16(28):107-109. 
[11] Ji Xing, Liao Fei, Wu Peili, Wen Weiheng, Wang Ming, Sun Jia. Research progress on the weight loss effect and mechanism of SGLT2 inhibitors [J]. Journal of Practical Medicine, 2019, 35(07):1165-1169. 
[12] Leiter LA, Yoon KH, Arias P, et al. Canagliflozin provides durable glycemic improvements and body weight reduction over 104weeks versus glimepiride in patients with type 2 diabetes on metformin: a randomized, double-blind, phase 3 study [J]. Diabetes Care , 2015, 38(3):355-364. DOI:10. 2337/dc13-2762. 
[13] Nigro SC, Riche DM, Pheng M, Baker WL. Canagliflozin, a novel SGLT2 inhibitor for treatment of type 2 diabetes. Ann Pharmacother. 2013 Oct;47(10):1301-11. doi: 10.1177/1060028013503626. Epub 2013 Oct 8. PMID: 24259694. 
[14] Madeira Ir, Carvalho Cn, Gazolla Fm, et al. Impact o obesity on metabolic syndrome component and adipokines in prepuberta children [J]. J Pediatr (Rio J), 2009, 85(3):261-268. DOI:10. 2223/ JPEG. 1873. 
[15] Wu Xiuqin, Zhou Xiaodong, Ge Linwei, et al. Analysis on the characteristics of body fat index, body mass percentage and waist-hip ratio of residents in three cities in Fujian Province[J]. China Sports Science and Technology, 2007, 43 (5): 90-93. 
[16] Kato K, Suzuki K, Aoki C, et al. The effects of intermittent use of the SGLT-2 inhibitor, dapagliflozin, in overweight patients with type 2 diabetes in Japan: a randomized, crossover, controlled clinical trial [J]. Expert Opinion on Pharmacotherapy, 2017, 18(8):743-751. DOI: 10. 1080/14656566. 2017. 1317748. 
[17] Bailey Cj, Gross Jl, Pieters A, et al. Effect of Dapagliflozin in patients with type 2 diabetes who have inadequate glycemic control with metformin: a randomised, double-blind, placebo-controlled trial[J]. Lancet, 2010, 375(9733): 2223-2233. 
[18] Xin YK, Guo Y, Li YL, et al. Effects of sodium glucose cotransporter-2 inhibitors on serum uric acid in type 2 diabetes mellitus: A systematic review with an indirect comparison meta-analysis[J]. Saudi Journal of Biological Sciences, 2019, 26(2): 421-426. 
[19] Davies Mj, Trujillo A, Vijapurkar U, et al. Effect of Canagliflozin on serum uric acid in patients with type 2diabetes mellitus [J]. Diabetes Obesity&Metabolism, 2015, 17(4):426-429. 
[20] Chen Chongxin; Li Rong. Research progress on the effect of SGLT2 inhibitors on serum uric acid[J]. Modern Clinical Medicine, 2021, 47(02):147-149. 
[21] Zinman B, Wanner C, Lachin JM. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes[J]. New Eng J Med, 2015, 22(373):2128-2177. DOI: 10. 1056/NEJMoa1504720 
[22] Zhang Guorui, Ma Sai, He Lili, Guo Yifang. Research progress and guideline recommendation of cardiovascular benefits of sodium-glucose cotransporter-2 inhibitors [J]. Advances in Cardiovascular Diseases, 2021, 42(03):252-255 +265. 
[23] Kato ET, Silverman MG, Mosenzon O, et al. Effect of Dapagliflozin on Heart Failure and Mortality in Type 2 Diabetes Mellitus [J]. Circulation, 2019, 139(22):2528-2536. DOI:10. 1161/CIRCULATIONAHA. 119. 040130. 
[24] Mcmurray JJV, Solomon SD, Inzucchi SE. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction [J]. The New England Journal of Medicine, 2019, 381:1995-2008
[25] Petrie MC, Verma S, Docherty KF, et al. Effect of Dapagliflozin on Worsening Heart Failure and Cardiovascular Death in Patients With Heart Failure With and Without Diabetes[J]. JAMA, 2020, 323(14):1353. 
[26] Mc Murray JJV, Solomon SD, Inzucchi SE, et al. DAPA-HF Trial Committees and Investigators. Dapagliflozin in patients with heart failure and reduced ejection fraction [J]. N Engl J Med, 2019, 381:1995-2008. 
[27] Weber MA, Mansfield TA, Alessi F, et al. Effects of dapagliflozin on blood pressure in hypertensive diabetic patients on renin-angiotensin system blockade [J]. Blood Press, 2016, 25:93-103. 
[28] Baker WL, Buckley LF, Kelly MS, et al. Effects of sodium-glucose cotransporter 2 inhibitors on 24-hour ambulatory blood pressure: a systematic review and metaanalysis[J]. J Am Heart Assoc, 2017, 6:e005686. 
[29] Crunkhorn S. Cancer: Repurposing SGLT2 inhibitors [J]. Nat Rev Drug Discov, 2018, 18(1): 18. 
[30] Komatsu S, Nomiyama T, Numata T, et al. SGLT2inhibitor ipragliflozin attenuates breast cancer cell proliferation [J]. Endocr J, 2020, 67(1):99-106. 
[31] Scafoglio C, Hirayama BA, Kepe V, et al. Functional expression of sodium-glucose transporters in cancer. Proc Natl Acad Sci USA, 2015, 112(30):E4111-E4119. 
[32] Nakano D, Kawaguchi T, Iwamoto H, et al. Effects of canagliflozin on growth and metabolic reprograming in hepatocellular carcinoma cells: Multi-omics analysis of metabolomics and absolute quantification proteomics(i MPAQT) [J]. PLo S One, 2020, 15 (4): e0232283. 
[33] Okada J, Yamada E, Saito T, et al. Dapagliflozin inhibits cell adhesion to collagen I and IV and increases ectodomain proteolytic cleavage of DDR1 by increasing ADAM10activity[J]. Molecules, 2020, 25(3):495. 
[34] Saito T, Okada S, Yamada E, et al. Effect of dapagliflozin on colon cancer cell[J]. Endocr J, 2015, 62(12):1133-1137. 
[35] Angelopoulou A, Kolokithas-Ntoukas A, Papaioannou L, et al. Canagliflozin-loaded magnetic nanoparticles as potential treatment of hypoxic tumors in combination with radiothe rapy[J]. Nanomedicine (Lond), 2018, 13(19):2435-2454.

Downloads: 431
Visits: 13472

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.