Education, Science, Technology, Innovation and Life
Open Access
Sign In

Molecular dynamics simulation of self-assembly in anionic and zwitterionic surfactant systems

Download as PDF

DOI: 10.23977/analc.2023.020108 | Downloads: 20 | Views: 403

Author(s)

Lingchi Xu 1

Affiliation(s)

1 College of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China

Corresponding Author

Lingchi Xu

ABSTRACT

To explore the rheological behavior of anionic/zwitterionic surfactant mixtures, we performed molecular dynamical simulations at different molar ratios (XTPS = [TPS]/[TPS]+[SDS]) and Ca2+ concentration of sodium-dodecyl-sulfate (SDS) and tetradecyl-dimethyl-ammonium-propane-sulfonate (TPS) aqueous mixtures, which were investigated previously in experiment [1]. The simulation results indicated that with the increase of XTPS, the micelle aggregation evolving path is interdigitate-wormlike-sphere. Furthermore, with increasing Ca2+ concentration, the micelle aggregation evolving path is also interdigitate-wormlike-sphere. We can conclude that there exit an appropriate molar ratio and salt concentration to form wormlike micelle in the anionic/zwitterionic systems. 

KEYWORDS

Self-assembly, simulation, surfactant

CITE THIS PAPER

Lingchi Xu, Molecular dynamics simulation of self-assembly in anionic and zwitterionic surfactant systems. Analytical Chemistry: A Journal (2023) Vol. 2: 64-73. DOI: http://dx.doi.org/10.23977/analc.2023.020108.

REFERENCES

[1] Qiao, Y., et al. (2011) Metal-Driven Viscoelastic Wormlike Micelle in Anionic/Zwitterionic Surfactant Systems and Template-Directed Synthesis of Dendritic Silver Nanostructures. Langmuir. 27, 1718-1723. 
[2] Israelachvili, J. N., D. J. Mitchell, and B. W. Ninham. (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics. 72, 1525-1568. 
[3] Cates, M. E. and S. J. Candau. (1990) Statics and dynamics of worm-like surfactant micelles. Journal of Physics: Condensed Matter. 2, 6869-6892. 
[4] Abdel-Rahem, R. (2008) The influence of hydrophobic counterions on micellar growth of ionic surfactants. Advances in Colloid and Interface Science. 141, 24-36. 
[5] Marrink, S. J., D. P. Tieleman, and A. E. Mark. (2000) Molecular dynamics simulation of the kinetics of spontaneous micelle formation. Journal of Physical Chemistry B. 104, 12165-12173. 
[6] Morrissey, D. V., et al. (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nature Biotechnology. 23, 1002-1007. 
[7] Wei, W. and E. S. Yeung. (2001) DNA capillary electrophoresis in entangled dynamic polymers of surfactant molecules. Analytical Chemistry. 73, 1776-1783. 
[8] Bagaria, H. G., G. C. Kini, and M. S. Wong. (2010) Electrolyte Solutions Improve Nanoparticle Transfer from Oil to Water. Journal of Physical Chemistry C. 114, 19901-19907. 
[9] Moren, A. K., et al. (1999) Microstructure of protein-surfactant complexes in gel and solution - An NMR relaxation study. Langmuir. 15, 5480-5488. 
[10] Shukla, A. and H. Rehage. (2008) Zeta potentials and debye screening lengths of aqueous, viscoelastic surfactant solutions (cetyltrimethylammonium bromide/sodium salicylate system). Langmuir. 24, 8507-8513. 
[11] Golemanov, K., et al. (2008) Surfactant mixtures for control of bubble surface mobility in foam studies. Langmuir. 24, 9956-9961. 
[12] Majhi, P. R., et al. (2004) Coexistence of spheres and rods in micellar solution of dodecyldimethylamine oxide. Journal of Physical Chemistry B. 108, 5980-5988. 
[13] Magid, L. J., et al. (1997) Effect of counterion competition on micellar growth horizons for cetyltrimethylammonium micellar surfaces: Electrostatics and specific binding. Journal of Physical Chemistry B. 101, 7919-7927. 
[14] Hedin, N., I. Furo, and P. O. Eriksson. (2000) Fast diffusion of the Cl- ion in the headgroup region of an oppositely charged micelle. A Cl-35 NMR spin relaxation study. Journal of Physical Chemistry B. 104, 8544-8547. 
[15] Zehl, T., et al. (2006) Monte Carlo simulations of self-assembled surfactant aggregates. Langmuir. 22, 2523-2527. 
[16] Howes, A. J. and C. J. Radke. (2007) Monte Carlo simulations of Lennard-Jones nonionic surfactant adsorption at the liquid/vapor interface. Langmuir. 23, 1835-1844. 
[17] Khurana, E., S. O. Nielsen, and M. L. Klein. (2006) Gemini surfactants at the air/water interface: A fully atomistic molecular dynamics study. Journal of Physical Chemistry B. 110, 22136-22142. 
[18] Bandyopadhyay, S. and J. Chanda. (2003) Monolayer of monododecyl diethylene glycol surfactants adsorbed at the air/water interface: A molecular dynamics study. Langmuir. 19, 10443-10448. 
[19] Jang, S. S. and W. A. Goddard. (2006) Structures and properties of newton black films characterized using molecular dynamics simulations. Journal of Physical Chemistry B. 110, 7992-8001. 
[20] Tummala, N. R. and A. Striolo. (2008) Role of counterion condensation in the self-assembly of SDS surfactants at the water-graphite interface. Journal of Physical Chemistry B. 112, 1987-2000. 
[21] Mohanty, S., H. T. Davis, and A. V. McCormick. (2001) Complementary use of simulations and free energy models for CTAB/NaSal systems. Langmuir. 17, 7160-7171. 
[22] Wang, Z. and R. G. Larson. (2009) Molecular Dynamics Simulations of Threadlike Cetyltrimethylammonium Chloride Micelles: Effects of Sodium Chloride and Sodium Salicylate Salts. Journal of Physical Chemistry B. 113, 13697-13710. 
[23] Sangwai, A. V. and R. Sureshkumar. (2011) Coarse-Grained Molecular Dynamics Simulations of the Sphere to Rod Transition in Surfactant Micelles. Langmuir. 27, 6628-6638. 
[24] Sangwai, A. V. and R. Sureshkumar. (2012) Binary Interactions and Salt-Induced Coalescence of Spherical Micelles of Cationic Surfactants from Molecular Dynamics Simulations. Langmuir. 28, 1127-1135. 
[25] Sammalkorpi, M., M. Karttunen, and M. Haataja. (2007) Structural properties of ionic detergent aggregates: a large-scale molecular dynamics study of sodium dodecyl sulfate. Journal of Physical Chemistry B. 111, 11722-11733. 
[26] Sammalkorpi, M., M. Karttunen, and M. Haataja. (2009) Ionic Surfactant Aggregates in Saline Solutions: Sodium Dodecyl Sulfate (SDS) in the Presence of Excess Sodium Chloride (NaCl) or Calcium Chloride (CaCl2). Journal of Physical Chemistry B. 113, 5863-5870. 
[27] Velinova, M., et al. (2011) Sphere-to-Rod Transitions of Nonionic Surfactant Micelles in Aqueous Solution Modeled by Molecular Dynamics Simulations. Langmuir. 27, 14071-14077. 
[28] Zana, R. and Y. Talmon. (1993) Dependence of aggregate morphology on structure of dimeric surfactants. Nature. 362, 228-230. 
[29] Raghavan, S. R., G. Fritz, and E. W. Kaler. (2002) Wormlike micelles formed by synergistic self-assembly in mixtures of anionic and cationic Surfactants. Langmuir. 18, 3797-3803. 
[30] Koshy, P., et al. (2011) Unusual Scaling in the Rheology of Branched Wormlike Micelles Formed by Cetyltrimethylammonium Bromide and Sodium Oleate. Journal of Physical Chemistry B. 115, 10817-10825. 
[31] Lin, Y., et al. (2008) pH-Regulated Molecular Self-Assemblies in a Cationic-Anionic Surfactant System: From a "1-2" Surfactant Pair to a "1-1" Surfactant Pair. Langmuir. 24, 13918-13924. 
[32] Yakovlev, D. S. and E. S. Boek. (2007) Molecular dynamics simulations of mixed cationic/anionic wormlike micelles. Langmuir. 23, 6588-6597. 
[33] Grillo, I. and J. Penfold. (2011) Self-Assembly of Mixed Anionic and Nonionic Surfactants in Aqueous Solution. Langmuir. 27, 7453-7463. 
[34] Garamus, V. M. (2003) Formation of mixed micelles in salt-free aqueous solutions of sodium dodecyl sulfate and C12E6. Langmuir. 19, 7214-7218. 
[35] Ghosh, S., D. Khatua, and J. Dey. (2011) Interaction Between Zwitterionic and Anionic Surfactants: Spontaneous Formation of Zwitanionic Vesicles. Langmuir. 27, 5184-5192. 
[36] Sarmiento-Gomez, E., D. Lopez-Diaz, and R. Castillo. (2010) Microrheology and Characteristic Lengths in Wormlike Micelles made of a Zwitterionic Surfactant and SDS in Brine. Journal of Physical Chemistry B. 114, 12193-12202. 
[37] Chen, J. F. and J. C. Hao. (2013) Molecular dynamics simulation of cetyltrimethylammonium bromide and sodium octyl sulfate mixtures: aggregate shape and local surfactant distribution. Physical Chemistry Chemical Physics. 15, 5563-5571. 
[38] Yan, H., et al. (2010) Effect of Ca2+ and Mg2+ Ions on Surfactant Solutions Investigated by Molecular Dynamics Simulation. Langmuir. 26, 10448-10459. 
[39] Israelachvili, J. N(1977), D. J. Mitchell, and B. W. Ninham, Theory of self-assembly of lipid bilayers and vesicles. Biochimica et biophysica acta. 470, 185-201.

Downloads: 531
Visits: 19864

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.