Education, Science, Technology, Innovation and Life
Open Access

### Modeling and Analysis of Human Heat transfer in Cryogenic Protective clothing based on the principle of Heat transfer

DOI: 10.23977/jmpd.2021.050102 | Downloads: 14 | Views: 638

#### Author(s)

Guohao He 1, Yunfen Liu 1

#### Affiliation(s)

1 Mathematics and Statistics, Hubei Normal University, Huangshi, Hubei, 435000

Guohao He

#### ABSTRACT

In this paper, the simulation of low temperature protective clothing with phase change material is taken as the research object, and the model based on heat conduction equation is established through Fourie heat transfer law, various heat transfer modes and three kinds of boundary conditions. Based on the principle of heat transfer, two kinds of heat transfer modes, heat conduction and heat convection, are mainly considered in this paper. First of all, through the analysis of the heat transfer mechanism of low temperature protective composites in low temperature environment, the boundary conditions of thermal insulation layer and fabric layer are the third kind of boundary conditions, which can be regarded as a convective heat transfer process. Then the partial differential extraordinary model can be established according to the boundary conditions. The interior of the thermal insulation layer, the functional layer and the fabric layer are heat conduction, which can be solved by establishing a model according to Fourier law. Then this paper simulates the above two models and uses the implicit post-difference scheme (Crank method) to solve them in parts.

#### KEYWORDS

Heat transfer, cold clothing, Fourier law, the third kind of boundary condition

#### CITE THIS PAPER

Guohao He, Yunfen Liu, Modeling and Analysis of Human Heat transfer in Cryogenic Protective clothing based on the principle of Heat transfer. Journal of Materials, Processing and Design (2021) 5: 12-15. DOI: http://dx.doi.org/10.23977/jmpd.2021.050102

#### REFERENCES

[1] Wang Gengchen, Xiong Xianzhen. Analysis of some characteristics of solar radiation in Zhongshan Station, Antarctica [J]. Antarctic Research, 1991 (03): 64-68.
[2] Lu Linzhen. The heat transfer model of multilayer thermal protective clothing and the optimal determination of parameters [D]. Zhejiang University of Technology, 2018.
[3] Zhang Hongji. Heat conduction [M]. First Edition, Beijing: higher Education Press, (1992)
[4] Zhao Qiaoning, Deng Guangyu, Ma Baoke. Experimental analysis on the change of thermal resistance of clothing caused by exercise [J]. Journal of basic Science of Textile University, 2015 (3): 385, 390.
[5] Yu Yao, Qian Xiaoming, Fan Jintu. The influence of wind speed and walking speed on the thermal resistance of air layer on the surface of clothing [J]. Acta Textile Sinica, 2009. 30 (8): 107-112.

 Downloads: 600 46544

All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.