Education, Science, Technology, Innovation and Life
Open Access
Sign In

Synthesis, crystal structures and physicochemical performance of the triethylamine salt and copper (II) complex based on 3, 5-dinitropyrazole

Download as PDF

DOI: 10.23977/jmpd.2023.070203 | Downloads: 8 | Views: 270


Wei Du 1,2, Qing Ma 2, Ming Duan 1, Shaohua Gou 1


1 College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 100081, China
2 Institute of Chemical Materials, CAEP, Mianyang, 621999, China

Corresponding Author

Ming Duan


Two novel energetic ionic and coordination frameworks based on 3, 5-dinitropyrazole (3, 5-DNP) were prepared under the facile reaction conditions. They were characterized by FT-IR spectroscopy, Raman spectrum, single-crystal X-ray analysis and differential scanning calorimetry thermal analysis (DSC). Hirshfeld analysis showed that they both presented strong hydrogen-bond intermolecular interactions. Thermal properties and the nonisothermal thermokinetic parameters were obtained by differential scanning calorimeter (DSC) as well as Kissinger, Ozawa and Starink methods. The two energetic materials exhibit excellent thermal stabilities ([DNP] NH (Et)3: Tm=251℃, Td=377℃; Cu [DNP]2[H2O]2: Td=350℃). They can be potential candidates for heat-resistant energetic materials for military uses.


Energetic ionic salts, Energetic coordination compound, X-ray diffraction, Physicochemical properties


Wei Du, Qing Ma, Ming Duan, Shaohua Gou, Synthesis, crystal structures and physicochemical performance of the triethylamine salt and copper (II) complex based on 3, 5-dinitropyrazole. Journal of Materials, Processing and Design (2023) Vol. 7: 12-20. DOI:


[1] Gao H. X., Shreeve J. M. (2011) Azole-based Energetic Salts. Chem. Rev. 111, 7377-7436. 
[2] Zhang Y., Gao Z., Liu W., Liu G., Zhu M., Wu S., Yao W., Gao E. (2021) Synthesis of Copper-based Metal-organic Framework for Sensing Nitroaromatic Compounds. Inorg. Chem. Comm. 134, 109017
[3] Loubalová I., Kopel P. (2023) Coordination Compounds of Cu, Zn, and Ni with Dicarboxylic Acids and N Donor Ligands, and Their Biological Activity: A Review. Mol. 28, 1445. 
[4] Zhang Y. Q., Parrish D. A., Shreeve J. M. (2012) 4-nitramino-3, 5-dinitropyrazole-based Energetic Salts. Chem. Eur. J. 18, 987‒994. 
[5] Zhang Y. Q., Parrish D. A., Shreeve J. M. (2012) Synthesis and Properties of 3, 4, 5-trinitropyrazole-1-ol and Its Energetic Salts. Chem. 22, 12659‒12665. 
[6] Yin P., Damon A. P., Jean’ne M. S. (2015) Energetic Multifunctionalized Nitraminopyrazoles and Their Ionic Derivatives: Ternary Hydrogen-bond Induced High Energy Density Materials. Chem. Soc. 137, 4778‒4786. 
[7] Drukenmüller I. E., Klapötke T. M., Morgenstern Y., Rusan M., Stierstorfer J. (2014) Metal Salts of Dinitro-, Trinitropyrazole, and Trinitroimidazole. Z. Anorg. Allg. Chem. 640, 2139‒2148. 
[8] Wang Y. L., Zhao F. Q., Xu K. Z., Ji Y. P., Yi J. H., Chen B., An T. (2013) Synthesis, Crystal Structure and Thermal Behavior of 4-amino-3, 5-dinitropyrazole Potassium Salt. Inorg. Chim. Acta, 405, 505‒510. 
[9] Habraken C. L., Janssen J. W. A. M. (1971) The Formation of 3-Nitropyrazoles. J. Org. Chem. 36, 3081‒3084. 
[10] Kissinger H. E. (1957) Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 29, 1702‒1706. 
[11] Ozawa T. (1965) A New Method of Analyzing Thermogravimetric Data. Bull. Chem. Soc. Jap. 38, 1881‒1886. 
[12] Boswell P. G. (1980) On the Calculation of Activation Energies using a Modified Kissinger Method J. Therm. Anal. Calorim. 18, 353‒356. 
[13] Zhang T. L., Hu R. Z., Xie Y., Li F. P. (1994) The Estimation of Critical Temperatures of Thermal Explosion for Energetic Materials using Non-isothermal DSC. Thermochim. Acta 244, 171‒176. 
[14] Pourmortazavi S. M., Nasrabadi M. R., Kohsari I., Hajimirsadeghi S. S. (2012) Non-isothermal Kinetic Studies on Thermal Decomposition of Energetic Materials. J. Therm. Anal. Calorim. 110, 857‒863. 
[15] Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery Jr J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. (2010). Gaussian 09 D. 01, Gaussian Inc, Wallingford. 
[16] Gutowski K. E., Rogers R. D., Dixon D. A. (2007) Accurate Thermochemical Properties for Energetic Materials Applications. II. Heats of Formation of Imidazolium-, 1, 2, 4-Triazolium-, and Tetrazolium-Based Energetic Salts from Isodesmic and Lattice Energy Calculations. J. Phys. Chem. B, 111, 4788‒4800. 
[17] Jenkins H. D. B. (2002) Lattice Potential Energy Estimation for Complex Ionic Salts from Density Measurements. Inorg. Chem. 41, 2364‒2367. 
[18] Ma Q., Jiang T., Zhang X., Fan G., Wang J., Huang J. (2015) Theoretical Investigations on 4, 4′5, 5′-tetranitro-2, 2′-1H, 1′H-2, 2′-biimidazole Derivatives as Potential Nitrogen-rich High Energy Materials. J. Phys. Org. Chem. 28, 31‒39.

Downloads: 1186
Visits: 77411

Sponsors, Associates, and Links

All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.