An improved MIMLRBF natural scene image classification based on spectral clustering
DOI: 10.23977/jipta.2016.11006 | Downloads: 54 | Views: 6379
Author(s)
Shanshan Zhang 1, Wei WU 1
Affiliation(s)
1 School of Information Engineering, Key Laboratory of Fiber Optic Sensing Technology and Information Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
Corresponding Author
Shanshan ZhangABSTRACT
Natural scene image classification problems can be showed by multi-instances multi-labels learning model (MIML), and MIMLRBF algorithm achieved good effect. MIMLRBF algorithm is based on the clustering technology and neural network for classification. Related experiments show that the measure of the package and the selection of the cluster center have an important impact on the result of image classifications, in order to obtain better clustering accuracy, first of all, this article introduced the spectral clustering method in the training process, which can make the sample package center more reasonable; Second, we redefined the distance between the sample packages, to overcome effectively the influence of the isolated examples on the distance to the sample packages. The experimental results show that the proposed approach can effectively improve the classification accuracy, and it is better than MIMLRBF algorithm on the various performance.
KEYWORDS
image classification; Hausdorff distance; spectral clustering; MIMLRBF algorithmCITE THIS PAPER
Wei, W. and Shanshan Z. (2016) An improved MIMLRBF natural scene image classification based on spectral clustering. Journal of Image Processing Theory and Applications (2016) 1: 27-31.
REFERENCES
[1] Zhou Z-H, Zhang M-L. Multi-instance multi-label learning with application to scene classification[C]. Advances in neural information processing systems. 2006: 1609–1616.
[2] Zhang M-L, Wang Z-J. MIMLRBF: RBF neural networks for multi-instance multi-label learning[J]. Neurocomputing, Elsevier, 2009, 72(16): 3951–3956.
[3] Zhang M-L. A k-nearest neighbor based multi-instance multi-label learning algorithm[C]. Tools with Artificial Intelligence (ICTAI), 2010 22nd IEEE International Conference on. 2010: 207–212.
[4] Shi J,Malik J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):888-905.
[5] Ng A-Y, Jordan M-I,Weiss Y. On spectral clustering:Analysis and an algorithm[C]. Proceedings of the 14th Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,2002:849-856.
[6] Wang J, Zucker J-D. Solving multiple-instance problem: A lazy learning approach[J]. Morgan Kaufmann, 2000:1119-1125.
[7] Zhang M-L, Zhou Z-H. Multi-instance clustering with applications to multi-instance prediction[J]. Applied Intelligence, Springer, 2009, 31(1): 47–68.
[8] Wu J, Huang S, Zhou Z. Genome-wide protein function prediction through multi-instance multi-label learning[J]. Computational Biology and Bioinformatics, IEEE/ACM Transactions on, IEEE, 2014,11(5):891-902.
Downloads: | 1751 |
---|---|
Visits: | 122265 |
Sponsors, Associates, and Links
-
Power Systems Computation
-
Internet of Things (IoT) and Engineering Applications
-
Computing, Performance and Communication Systems
-
Journal of Artificial Intelligence Practice
-
Advances in Computer, Signals and Systems
-
Journal of Network Computing and Applications
-
Journal of Web Systems and Applications
-
Journal of Electrotechnology, Electrical Engineering and Management
-
Journal of Wireless Sensors and Sensor Networks
-
Mobile Computing and Networking
-
Vehicle Power and Propulsion
-
Frontiers in Computer Vision and Pattern Recognition
-
Knowledge Discovery and Data Mining Letters
-
Big Data Analysis and Cloud Computing
-
Electrical Insulation and Dielectrics
-
Crypto and Information Security
-
Journal of Neural Information Processing
-
Collaborative and Social Computing
-
International Journal of Network and Communication Technology
-
File and Storage Technologies
-
Frontiers in Genetic and Evolutionary Computation
-
Optical Network Design and Modeling
-
Journal of Virtual Reality and Artificial Intelligence
-
Natural Language Processing and Speech Recognition
-
Journal of High-Voltage
-
Programming Languages and Operating Systems
-
Visual Communications and Image Processing
-
Journal of Systems Analysis and Integration
-
Knowledge Representation and Automated Reasoning
-
Review of Information Display Techniques
-
Data and Knowledge Engineering
-
Journal of Database Systems
-
Journal of Cluster and Grid Computing
-
Cloud and Service-Oriented Computing
-
Journal of Networking, Architecture and Storage
-
Journal of Software Engineering and Metrics
-
Visualization Techniques
-
Journal of Parallel and Distributed Processing
-
Journal of Modeling, Analysis and Simulation
-
Journal of Privacy, Trust and Security
-
Journal of Cognitive Informatics and Cognitive Computing
-
Lecture Notes on Wireless Networks and Communications
-
International Journal of Computer and Communications Security
-
Journal of Multimedia Techniques
-
Automation and Machine Learning
-
Computational Linguistics Letters
-
Journal of Computer Architecture and Design
-
Journal of Ubiquitous and Future Networks