Education, Science, Technology, Innovation and Life
Open Access
Sign In

Elemental Doping─An Effective Method to Improve Semiconductor Thin-film Solar Cells Efficiency

Download as PDF

DOI: 10.23977/jmpd.2024.080118 | Downloads: 0 | Views: 50

Author(s)

Mingyan Ma 1, Guodong Xu 2

Affiliation(s)

1 Department of Maritime and Transportation, Ningbo University, Ningbo, 315832, China
2 College of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, 232001, China

Corresponding Author

Mingyan Ma

ABSTRACT

Nowadays, energy constraints and environmental problems are becoming increasingly serious. Semiconductor thin-film solar cells are widely used due to their green, simple operation and easy maintenance and so on. Elemental doping can enhance the semiconductor conductivity, raise the selectivity and activity of catalysts, and improve the microstructure of materials. It is widely regarded as an important way to increase the efficiency of solar cells. In this paper, the effect of elemental doping on the performance of perovskite solar cells, organic thin film and inorganic thin film solar cells is studied. Elemental doping can improve the electrical and photovoltaic performance of the cell. The carrier migration rate is improved after doping, thereby increasing the carrier lifetime. In addition, the morphology is improved by reducing surface defects. Compaction is improved due to increased grain size and reduced porosity. Most importantly, this method can improve energy utilization and promote the development of renewable energy sources.

KEYWORDS

Semiconductor Thin-film Solar Cell, Elemental Doping, Band Gap Width

CITE THIS PAPER

Mingyan Ma, Guodong Xu, Elemental Doping─An Effective Method to Improve Semiconductor Thin-film Solar Cells Efficiency. Journal of Materials, Processing and Design (2024) Vol. 8: 143-148. DOI: http://dx.doi.org/10.23977/jmpd.2024.080118.

REFERENCES

[1] Wang J , Liu L , Zhao M ,et al.Graphdiyne oxide modified nano CuO as inorganic hole transport layer for efficient and stable organic solar cells[J].2D Materials, 2021, 8(4):044015 (8pp).DOI:10.1088/2053-1583/ac2a92.
[2] Zainun A R , Mamat M H , Noor U M ,et al.Characterization of Copper (I) Iodide (CuI) Thin Film using TMED for Dye-Sensitized Solar Cells[J].Advanced Materials Research, 2013, 667:447-451.DOI:10.4028/www. Scientific .net/ AMR.667.447.
[3] Xiao Z , Yuan Y , Wang Q ,et al.Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells[J].Materials Science and Engineering: R: Reports, 2016.DOI:10.1016/j.mser.2015.12.002.
[4] Nakano K , Usui T , Takayashiki Y ,et al.PB58 Evaluation of Carrier Collection Efficiency of Organic Thin-film Solar Cells with a Calamitic Liquid Crystal[J].Proceedings of Japanese Liquid Crystal Society Annual meeting, 2013:_PB58-1_-_PB58-2.DOI:10.11538/ekitou.2013.0__PB58.
[5] Xue C R, Sun X Y. High Efficiency Thin Film Silicon Solar Cells[J].Advanced Materials Research, 2013, 750-752:970-973.DOI:10.4028/www.scientific.net/AMR.750-752.970.
[6] Kalytchuk S , Gupta S , Zhovtiuk O ,et al.Semiconductor Nanocrystals as Luminescent Down-Shifting Layers To Enhance the Efficiency of Thin-Film CdTe/CdS and Crystalline Si Solar Cells[J].Journal of Applied Physics, 2014, 118(30):16393–16400.DOI:10.1021/jp410279z.
[7] Ausserlechner S J , Gruber M , Hetzel R ,et al.Mechanism of surface proton transfer doping in pentacene based organic thin-film transistors[J].Physica Status Solidi, 2011, 209(1):181-192.DOI:10.1002/pssa.201127595.
[8] Liu X , Zi W , Liu S .p-Layer bandgap engineering for high efficiency thin film silicon solar cells[J].Materials Science in Semiconductor Processing, 2015, 39:192-199.DOI:10.1016/j.mssp.2015.04.011.
[9] Schulze T F, Korte L, Conrad E, et al.High‐forward‐bias transport mechanism in a‐Si:H/c‐Si heterojunction solar cells[J].Physica Status Solidi, 2010, 207(3):657-660.DOI:10.1002/pssa.200982747.
[10] Zhang J , Jia M , Sales M G ,et al.Impact of ZrO2 Dielectrics Thickness on Electrical Performance of TiO2 Thin Film Transistors with Sub-2 V Operation[J].ACS Applied Electronic Materials, 2021.DOI:10.1021/acsaelm.1c00909.
[11] Chen Y H, Liu Y T, Huang C F, et al.Improved photovoltaic properties of amorphous silicon thin-film solar cells with an un-doped silicon oxide layer [J].Materials Science in Semiconductor Processing, 2015, 31:184-188.DOI: 10.1016/j. mssp.2014.11.042.
[12] Park S , Yong Ji H , Jun Kim M ,et al.Enhanced quantum efficiency of amorphous silicon thin film solar cells with the inclusion of a rear-reflector thin film[J].Applied Physics Letters, 2014, 104(7):073902-073902-5.DOI:10. 1063/1. 4865927.
[13] Zeng K , Xue D J , Tang J .Antimony selenide thin-film solar cells[J].Semiconductor Science & Technology, 2016, 31(6):063001.DOI:10.1088/0268-1242/31/6/063001.
[14] A P L , B S E Y , A Y M ,et al.Design of Ag nanograting for broadband absorption enhancement in amorphous silicon thin film solar cells[J].Materials Science in Semiconductor Processing, 2015, 39:760-763.DOI:10.1016/j. mssp. 2015. 06.047.

Downloads: 2400
Visits: 116648

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.