Closed Cell Aluminium Foams with Phase Change Material
DOI: 10.23977/metf.2017.11003 | Downloads: 74 | Views: 7976
Author(s)
Jaroslav KOVÁČIK 1, Ján ŠPANIELKA 1, Tomáš DVORÁK 1, Peter Oslanec Jr. 1, Jaroslav JERZ 1
Affiliation(s)
1 Institute of Materials and Machine Mechanics SAS, Dúbravská cesta 9, 845 13 Bratislava, Slovakia
Corresponding Author
Jaroslav KOVÁČIKABSTRACT
Closed cell aluminium foam samples and panels with phase change material (PCM) infiltrated in vacuum were investigated. The utilization of PCMs in larger volumes is strongly limited because of its low thermal conductivity in liquid state. However, porous structure of aluminium foam allows to absorb or to dissipate very homogenously latent heat at almost constant temperature if PCMs with phase change at the temperature range between 4°C and 28 °C are used inside of foam. Therefore the degree of filling of closed cell aluminium foams with PCM material was investigated. It was shown that it is possible to fill sufficient amount of pores with PCM. Further, aluminium foam panels with PCM were tested for heating/cooling applications in buildings. It was confirmed, that such foam panels provide an excellent alternative for large built-in ceiling radiators for efficient heating or cooling of rooms using low potential energy resources. These features of foam panels allow significantly reduce energy consumption of heating/air conditioning systems of future zero energy buildings.
KEYWORDS
Metallic foams, aluminium foams, phase change materials, zero energy buildings, heat dissipation.CITE THIS PAPER
Jaroslav KOVÁČIK, Ján ŠPANIELKA, Tomáš DVORÁK, Peter Oslanec Jr., Jaroslav JERZ. (2017) Closed Cell Aluminium Foams with Phase Change Material. Matallic foams (2017) Vol.1, Num. 1: 42-48.
REFERENCES
[1] Jerz J., Simančík F., Orovčík L., Advanced solution for energy storage in net zero-energy buildings. In Mechanical Technologies and Structural Materials 2014. - Split: Croatian Society for Mechanical Technologies, (2014) 47-54.
[2] de Boer R., Smeding S., Zondag H. and Krol G., Development of a prototype system for seasonal solar heat storage using an open sorption process, In Eurotherm Seminar #99, Advances in Thermal Energy Storage, (2014), Lleida, Spain.
[3] Jerz J., Tobolka, P., Michenka, V. and Dvorák, T., Heat storage in future zero-energy buildings. In International Journal of Innovative Research in Science, Engineering and Technology, (2015), vol. 4, iss. 8, 6722-6728, DOI:10.15680/IJIRSET.2015.0408003.
[4] Jerz J., Simančík F., Kováčik, J., Oslanec, P., Sr., Energy demand reduction to ensure thermal comfort in buildings using aluminium foam. In Acta Metallurgica Slovaca, 2016, 22, č. 4, s. 271-275. ISSN 1338-1156.
[5] RUBITHERM PCM RT28HT Data sheet, Rubitherm Technologies GmbH, Berlin, Germany, 2014.
[6] C X Guo, X L Ma, L Yang, PCM/ graphite foam composite for thermal energy storage device, 2015 Global Conference on Polymer and Composite Materials (PCM 2015), IOP Publishing, IOP Conf. Series: Materials Science and Engineering 87 (2015) 012014 doi:10.1088/1757-899X/87/1/012014.
[7] X. Yang, W. Wang, S. Feng, L. Jun, T.J. Lu, Y. Chai, Q. Zhang Thermal analysis of cold storage: the role of porous metal form, Energy Procedia, 88 (2016), pp. 566-573.
[8] C.Y. Zhao, W. Lu, Y. Tian, Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs)Sol Energy, 84 (2010), pp. 1402-1412.
[9] X. Xiao, P. Zhang, M. Li, Preparation and thermal characterization of paraffin/metal foam composite phase change material, Appl Energy, 112 (2013), pp. 1357-1366.
[10]S.S. Feng, Y. Zhang, M. Shi, T. Wen, T.J. Lu, Unidirectional freezing of phase change materials saturated in open-cell metal foams, Appl Therm Eng, 88 (2015), pp. 315-321.
[11] A. Siahpush, J. O’Brien, J. Crepeau, Phase change heat transfer enhancement using copper porous foam, J Heat Transf, 130 (2008), p. 082301
[12] E. Fleming, S.Y. Wen, L. Shi, A.K. Silva, Experimental and theoretical analysis of an aluminum foam enhanced phase change thermal storage unit, Int J Heat Mass Transf, 82 (2015), pp. 273-281.
[13] O. Mesalhy, K. Lafdi, A. Elgafy, K. Bowman, Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix, Energy Conver Manag, 46 (2005), pp. 847-867.
[14] X.H. Yang, J.X. Bai, H.B. Yan, J.J. Kuang, T. Kim, T.J. Lu, An analytical unit cell model for the effective thermal conductivity of high porosity open-cell metal foams, Trans Porous Med, 102 (2014), pp. 403-426.
[15] Kováčik, J., Orovčík, Ľ., Jerz, J., High-temperature compression of closed cell aluminium foams. In Kovove Mater, 2016, Vol 54, No. 6, pp. 429-440. ISSN 0023-432X.
[16] Lazaro, J.; Solórzano, E.; Rodriguez Pérez, M.A.; Garcia-Moreno, F.: Pore connectivity of aluminium foams: effect of production parameters. Journal of Materials Science 50 (2015), p. 3149-3163.
Downloads: | 385 |
---|---|
Visits: | 44722 |
Sponsors, Associates, and Links
-
Forging and Forming
-
Composites and Nano Engineering
-
Journal of Materials, Processing and Design
-
Smart Structures, Materials and Systems
-
Chemistry and Physics of Polymers
-
Analytical Chemistry: A Journal
-
Modern Physical Chemistry Research
-
Inorganic Chemistry: A Journal
-
Organic Chemistry: A Journal
-
Progress in Materials Chemistry and Physics
-
Transactions on Industrial Catalysis
-
Fuels and Combustion
-
Casting, Welding and Solidification
-
Journal of Membrane Technology
-
Journal of Heat Treatment and Surface Engineering
-
Trends in Biochemical Engineering
-
Ceramic and Glass Technology
-
Transactions on Metals and Alloys
-
High Performance Structures and Materials
-
Rheology Letters
-
Plasticity Frontiers
-
Corrosion and Wear of Materials
-
Fluids, Heat and Mass Transfer
-
International Journal of Geochemistry
-
Diamond and Carbon Materials
-
Advances in Magnetism and Magnetic Materials
-
Advances in Fuel Cell
-
Journal of Biomaterials and Biomechanics