Education, Science, Technology, Innovation and Life
Open Access
Sign In

Energy-Efficient Obstacle Avoidance Optimization for Multi-Vehicle Systems Based on an Improved Artificial Potential Field with PID Control

Download as PDF

DOI: 10.23977/autml.2025.060116 | Downloads: 4 | Views: 196

Author(s)

Guanghong Liang 1, Weigang Yan 1, Yongxiang Fan 1

Affiliation(s)

1 School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China

Corresponding Author

Guanghong Liang

ABSTRACT

In multi-vehicle formation scenarios, obstacle avoidance in unknown environments presents several challenges, such as obstacles near the target, entrapment in local minima, and dynamic obstacle interference. To address these issues in multi-vehicle formation control, this paper proposes an optimization algorithm that enhances the artificial potential field (APF) method with PID control. Simulation experiments demonstrate that, compared to benchmark algorithms, the proposed method achieves reductions of 32.4%, 41.9%, 24.8%, and 32.0% in the number of total iterations, formation efficiency function value, energy consumption, and iteration standard deviation, respectively. The improved approach effectively resolves slow obstacle avoidance near the target, overcomes local minima issues, handles dynamic obstacles, exhibits enhanced robustness, and realizes energy-efficient obstacle avoidance in complex environments.

KEYWORDS

PID Control; Multi-Vehicle Systems; Formation Obstacle Avoidance; Leader–Follower Method; Artificial Potential Field; Energy Efficiency

CITE THIS PAPER

Guanghong Liang, Weigang Yan, Yongxiang Fan, Energy-Efficient Obstacle Avoidance Optimization for Multi-Vehicle Systems Based on an Improved Artificial Potential Field with PID Control. Automation and Machine Learning (2025) Vol. 6: 135-145. DOI: http://dx.doi.org/10.23977/autml.2025.060116.

REFERENCES

[1] Dahiya, A., Aroyo, A. M., Dautenhahn, K., and Smith, S. L. (2023). A survey of multi-agent Human–Robot Interaction systems. Robotics Aut. Syst. 161, 104335. doi:10.1016/j. robot.2022.104335
[2] Cheng, C., Zhu, D., Sun, B., Chu, Z., Nie, J., and Zhang, S. (2015). "Path planning for autonomous underwater vehicle based on artificial potential field and velocity synthesis," in 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE), Halifax, NS, Canada (IEEE), 717–721. doi:10.1109/CCECE. 2015.7129363
[3] Wang, L., Zhu, D., Pang, W., and Zhang, Y. (2023). A survey of underwater search for multi-target using Multi-AUV: task allocation, path planning, and formation control. Ocean. Eng. 278, 114393. doi:10.1016/j.oceaneng.2023.114393
[4] Fan, X., Guo, Y., Liu, H., Wei, B., and Lyu, W. (2020). Improved artificial potential field method applied for AUV path planning. Math. Problems Eng. 2020, 1–21. doi:10. 1155/2020/6523158 
[5] Jia, Q., and Wang, X. (2010). “An improved potential field method for path planning,” in 2010 Chinese Control and Decision Conference, Xuzhou, China (IEEE), 2265–2270. doi:10.1109/CCDC.2010.5498836
[6] Yang, X., Yang, W., Zhang, H., Chang, H., Chen, C.-Y., and Zhang, S. (2016). "Anew method for robot path planning based artificial potential field," in 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), Hefei, China (IEEE), 1294–1299. doi:10.1109/ICIEA.2016.76037841294–1299. doi:10.1109/ICIEA.2016.7603784
[7] Sfeif, J., Saad, M., and Saliah-Hassane, H. (2011). "An improved Artificial Potential Field approach to real-time mobile robot path planning in an unknown environment," in 2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE), Montreal, QC, Canada (IEEE), 208–213. doi:10.1109/ROSE.2011.6058518
[8] Zhang, C. (2018). Path planning for robot based on chaotic artificial potential field method. IOP Conf. Ser. Mater. Sci. Eng. 317, 012056. doi:10.1088/1757-899X/317/1/ 012056
[9] Matoui, F., Boussaid, B., and Abdelkrim, M. N. (2019). Distributed path planning of a multi-robot system based on the neighborhood artificial potential field approach. SIMULATION 95, 637–657. doi:10.1177/0037549718785440
[10] Sun, J., Liu, G., Tian, G., and Zhang, J. (2019). Smart obstacle avoidance using a danger index for a dynamic environment. Appl. Sci. 9, 1589. doi:10.3390/app9081589
[11] Xian-Xia, L., Chao-Ying, L., Xue-Ling, S., and Ying-Kun, Z. (2018). Research on improved artificial potential field approach in local path planning for mobile robot. Comput. Simul. Available at: http: //en. cnki. com. cn/Article_en/CJFDTotal-JSJZ201804063.htm (Accessed December 25, 2023). doi:10.3969/j.issn.1006-9348. 2018.04. 063
[12] Li, G., Yamashita, A., Asama, H., and Tamura, Y. (2012). "An efficient improved artificial potential field based regression search method for robot path planning," in 2012 IEEE International Conference on Mechatronics and Automation, Chengdu, China (IEEE), 1227–1232. doi:10.1109/ICMA.2012.6283526
[13] Wu, Z., Dai, J., Jiang, B., and Karimi, H. R. (2023). Robot path planning based on artificial potential field with deterministic annealing. ISA Trans. 138, 74–87. doi:10. 1016/j.isatra.2023.02.018
[14] Montiel, O., Sepúlveda, R., and Orozco-Rosas, U. (2015). Optimal path planning generation for mobile robots using parallel evolutionary artificial potential field. J. Intell. Robot. Syst. 79, 237–257. doi:10.1007/s10846-014-0124-8
[15] Oh, K.-K., Park, M.-C., and Ahn, H.-S. (2015). A survey of multi-agent formation control. Automatica 53, 424–440. doi:10.1016/j.automatica.2014.10.022.
[16] Cao, J. F., Ling, Z. H., Gao, C., and Yuan, Y. F. (2014). Obstacle avoidance and formation control for multi-agent based on swarming. J. Syst. Simul. Available at: http://en.cnki.com.cn/Article_en/CJFDTotal-XTFZ201403014.htm (Accessed October 17, 2023). doi:10.16182/j.cnki.joss.2014.03.040
[17] Zheng, Z., Li, Y., and Wang, Y. (2022). Research and implementation of multi-agent UAV system simulation platform based on JADE. Cham: Springer. doi:10.1007/978-3-030-99200-2_10
[18] Khatib O . Real-Time Obstacle Avoidance System for Manipulators and Mobile Robots[J]. The International Journal of Robotics Research, 1985, 5(1):90-98
[19] Yang, Y. B., and Wang, C. L. (2013). Obstacle avoidance method for mobile robots based on improved artificial potential field method and its implementation on MATLAB. J. Univ. Shanghai Sci. Technol. Available at: http://www.researchgate.net/publication/312121694_Obstacle_avoidance_method_for_mobile_robots_based_on_ improved_artificial_potential_field_method_and_its_implementation_on_MATLAB (Accessed December 25, 2023). doi:10.13255/j.cnki.jusst.2013.05.009
[20] Cui, B. X., and Song, J. R. (2018). Obstacle avoidance and dynamic target tracking of robot in unknown environment. J. Shenyang Univ. Technol. 40, 292–298. doi:10.7688/j. issn.1000-1646.2018.03.10
[21] Zhang, X., Su, W., and Chen, L. (2019). "A multi-agent formation control method based on bearing measurement," in 2019 4th International Conference on Measurement, Information and Control (New York, United States: IEEE). Available at: http://www.xueshufan.com/publication/3016828710 (Accessed December 26, 2023).
[22] Yanbin, Z., Pengxue, X. I., Linlin, W., Wenxin, F. a. N., and Mengyun, H. a. N. (2018). Obstacle avoidance method for multi-agent formation based on artificial potential field method. J. Comput. Appl. 38, 3380. doi:10.11772/j.issn.1001-9081.2018051119

Downloads: 3722
Visits: 166916

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.