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Abstract: In multi-vehicle formation scenarios, obstacle avoidance in unknown environments 

presents several challenges, such as obstacles near the target, entrapment in local minima, 

and dynamic obstacle interference. To address these issues in multi-vehicle formation control, 

this paper proposes an optimization algorithm that enhances the artificial potential field (APF) 

method with PID control. Simulation experiments demonstrate that, compared to benchmark 

algorithms, the proposed method achieves reductions of 32.4%, 41.9%, 24.8%, and 32.0% in 

the number of total iterations, formation efficiency function value, energy consumption, and 

iteration standard deviation, respectively. The improved approach effectively resolves slow 

obstacle avoidance near the target, overcomes local minima issues, handles dynamic 

obstacles, exhibits enhanced robustness, and realizes energy-efficient obstacle avoidance in 

complex environments. 

1. Introduction 

Against the backdrop of global energy scarcity and environmental degradation, the automotive 

industry is transitioning rapidly toward new energy, intelligentization and energy-efficient 

development. In contrast, multi-robot systems offer a more economical, efficient, and time-saving 

solution, enabled by resource sharing and mass production mechanisms, which significantly reduce 

overall cost and enhance economic viability in practical applications. As robotic production lines 

become more prevalent, there has been a noticeable shift in demand from standalone robots to 

autonomous, collaborative multi-robot systems (Dahiya et al., 2023) [1]. 

Recent years have witnessed extensive research in multi-vehicle formation control (Oh et al., 2015) 

[2], with particular emphasis on formation establishment, maintenance, reconfiguration, obstacle 

avoidance, and adaptive coordination (Wang et al., 2023) [3]. However, this method exhibits a critical 

flaw: excessive reliance on the leader vehicle compromises system robustness due to its dominant 

role. As depicted in Figure 1, the conventional APF method also suffers from inherent limitations 

(Fan et al., 2020) [4], including: (A) Goal Non-Reachability with Nearby Obstacles (GNRON), (B) 

local minima entrapment, and (C) challenges in dynamic obstacle avoidance. 
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Goal not Reachable or Not Obtainable   Trapped in local Minimum Reion   Obstacle avoidance in dynamic environment 

Figure 1: Problems of traditional algorithms 

To resolve goal non-reachability with nearby obstacles (GNRON). Jia and Wang [5] eliminated 

GNRON by amplifying the attractive potential gradient near targets. Yang et al. [6] implemented 

potential field filling through supplementary fields in target regions. Sfeir et al. [7] devised an 

environment-agnostic repulsive potential field, while Zhang [8] redefined repulsive potentials using 

flow-field coordinates. 

Regarding local minima entrapment, Matoui et al. [9] utilized non-minimum velocity algorithms. 

Sun et al. [10] employed dynamic window approaches for escape, whereas Xian-Xia et al. [11] deployed 

virtual obstacles near minima via sector partitioning. Li et al. [12] constructed virtual local targets 

through novel potential functions, and Wu et al. [13] integrated simulated annealing with deterministic 

annealing for minima evasion. 

For dynamic environment obstacle avoidance, Montiel et al. [14] established parallel-evolution 

artificial potential fields. Cheng et al. [15] synthesized velocity methods with APF, while Cao et al. [16] 

applied limit-cycle theory to multi-vehicle systems, overcoming APF limitations. Zheng et al. [17] 

developed a fuzzy APF-based formation strategy, effectively resolving formation control and obstacle 

avoidance in dynamic scenarios. 

2. Improvements Based on the Artificial Potential Field Method 

In the Artificial Potential Field (APF) method (Khatib, 1985) [18], the attractive gain coefficient 

(𝑘𝑎𝑡𝑡) and the repulsive gain coefficient (𝑘𝑟𝑒𝑝) play a crucial role in determining the effectiveness of 

obstacle avoidance. However, the selection of these coefficients is typically based on empirical 

knowledge rather than being optimized for specific environments. As a result, several issues may 

arise, such as the occurrence of local minima, elongated obstacle avoidance paths, and difficulties in 

handling dynamic environments. 

2.1. Enhancement of the Attractive Potential Function 

2.1.1. Long-Distance Attractive Force Adjustment 

In scenarios where the map is large and the target point is distant, the attractive force is 

proportional to the distance to the goal.  

Define the target distance difference e in equation 1: 

𝑒 = {
𝑞0 − 𝑞𝑔   𝑖𝑓 𝑙𝑒𝑎𝑑𝑒𝑟

𝑞𝑖 − 𝑞𝑒    𝑖𝑓 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟
(1) 

In the proposed method: 𝑞0  denotes the current position of the leader, and 𝑞𝑔  represents the 

leader’s target position; 𝑞𝑖  refers to the current position of the follower, while 𝑞𝑒  indicates the 

expected target position of the follower.  

The formula for the enhanced gravitational potential field is shown as equation 2: 
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𝑈𝑎𝑡𝑡(𝑒) = {

1

2
𝑘𝑎𝑡𝑡𝑒

2,                           𝑒 ≤ 𝑑

𝑑𝑘𝑎𝑡𝑡𝑒 −
1

2
𝑘𝑎𝑡𝑡𝑑

2, 𝑒 > 𝑑

 (2) 

Where 𝑈𝑎𝑡𝑡(𝑒) represents the gravitational potential field; 𝑘𝑎𝑡𝑡 is a gravitational gain coefficient 

greater than 0; 𝑑 is the given constant, in this case the distance factor. 

The corresponding gravitational function is given in Equation. 3: 

𝐹𝑎𝑡𝑡(𝑒) = −∇𝑈𝑎𝑡𝑡(𝑒) = {
𝑘𝑎𝑡𝑡𝑒,                      𝑒 ≤ 𝑑

−𝑑𝑘𝑎𝑡𝑡
𝑒

‖𝑒‖
, 𝑒 > 𝑑

(3) 

2.1.2. PID-Controlled Attraction Adjustment 

As the agent approaches the target position, the attractive force becomes relatively weak. the 

attractive potential function can be further enhanced by integrating PID control techniques. 

The improved gravitational function is given in Equation 4: 

𝐹𝑎𝑡𝑡(𝑒) = 𝑘𝑝𝑒 + 𝑘𝑖∫ 𝑒𝑑𝑡
𝑡

0

+ 𝑘𝑑
𝑑𝑒

𝑑𝑡
(4) 

Where 𝑘𝑝, 𝑘𝑖 and 𝑘𝑑 represent t the proportional, integral, and derivative coefficients of the PID 

control, respectively. These coefficients correspond to the proportional, integral, and derivative items 

of the distance difference between the vehicle’s current position and the target position. 

The above formula represents the continuous expression of PID control, and the discrete form is 

expressed as shown in Equation 5: 

𝐹𝑎𝑡𝑡(𝑒𝑖) = 𝑘𝑝𝑒𝑖 + 𝑘𝑖∑𝑒𝑖

𝑁

𝑖=1

+ 𝑘𝑑(𝑒𝑖 − 𝑒𝑖−1) (5) 

2.1.3. Final Form of Improved Attractive Function 

Combining the two improvements of 1.1.1 and 1.1.2, the improved gravitational function is 

obtained as shown in Equation 6: 

𝐹𝑎𝑡𝑡(𝑒𝑖) =

{
 
 

 
 𝑘𝑝𝑒𝑖 + 𝑘𝑖∑𝑒𝑖

𝑁

𝑖=1

+ 𝑘𝑑(𝑒𝑖 − 𝑒𝑖−1)

−𝑑𝑘𝑝
𝑒𝑖
‖𝑒𝑖‖

+ 𝑘𝑖∑𝑒𝑖

𝑁

𝑖=1

+ 𝑘𝑑(𝑒𝑖 − 𝑒𝑖−1)

 (6) 

2.2. Enhancement of the Repulsive Potential Function 

2.2.1. Spatial Repulsive Force Function Improvement 

In the traditional artificial potential field (APF) method, several issues can arise—most notably, 

the problem of unreachable target points. To address these limitations and enhance overall 

performance, a modified repulsive force function is introduced. 

Define obstacle distance difference s in Equation 7: 
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𝑠 = 𝑞 − 𝑞0                                                                      (7) 

Where 𝑞 represents the vehicle’s current position and 𝑞0 is the obstacle’s current position.  

The position repulsion field function (Yang and Wang, 2013) [19] based on the distance difference 

between obstacles and targets is as given in Equation 8: 

𝑈𝑟𝑒𝑝𝑥(𝑠) = {

1

2
𝑘𝑟𝑒𝑝 (

1

𝑠
−
1

𝜌0
)
2

𝑒𝑛 ,     𝑠 ≤ 𝜌0

0,                                        𝑠 > 𝜌0

(8) 

Where  𝑈𝑟𝑒𝑝𝑥(𝑠)  represents the position repulsive potential field; 𝑘𝑟𝑒𝑝  is a repulsive gain 

coefficient greater than 0; ρ0 is the influence distance of obstacles; n is a given constant, and 2 is 

taken in this paper. 

The negative gradient of the position repulsion field function can be obtained, and the improved 

position repulsion function can be obtained as shown in Equation. 9: 

𝐹𝑟𝑒𝑝𝑥(𝑠) = −𝛻𝑈𝑟𝑒𝑝𝑥(𝑠) = {
𝐹𝑟𝑒𝑝1 + 𝐹𝑟𝑒𝑝2,   𝑠 ≤ 𝜌

0,                           𝑠 > 𝜌0
(9) 

Among them, Frep1 and Frep2 are: 

𝐹𝑟𝑒𝑝1 = 𝑘𝑟𝑒𝑝(
1

𝑠
−
1

𝜌0
)
𝑒𝑛

𝑠2
 (10) 

𝐹𝑟𝑒𝑝2 =
2

𝑛
𝑘𝑟𝑒𝑝(

1

𝑠
−
1

𝜌0
)2𝑒𝑛−1 (11) 

2.2.2. Velocity-Based Repulsive Force Improvement 

The potential field function of the velocity repulsion (Cui and Song, 2018) [20] is defined as given 

in Equation 12: 

𝑈𝑟𝑒𝑝𝑣(𝑠𝑖) = {

1

2
𝑘𝑣(𝑠𝑖 − 𝑠𝑖−1)

2, 𝑠𝑖 ≤ 𝜌0 ∩ 𝛼 ∈ (−
𝜋

2
,
𝜋

2
)

0,  𝑒𝑙𝑠𝑒

 (12) 

Where 𝑈𝑟𝑒𝑝𝑣(𝑠𝑖) represents the velocity repulsive potential field; 𝑘𝑣 is a velocity gain coefficient 

greater than 0; the difference between two iterations of si represents the relative velocity between the 

vehicle and the obstacle; α is the angle between relative velocity and relative position. 

The velocity repulsion function is given in Equation 13: 

𝐹𝑟𝑒𝑝𝑣(𝑠𝑖) = 𝑈𝑟𝑒𝑝𝑣(𝑠𝑖) = {

1

2
𝑘𝑣(𝑠𝑖 − 𝑠𝑖−1)

2, 𝑠𝑖 ≤ 𝜌0 ∩ 𝛼 ∈ (−
𝜋

2
,
𝜋

2
)

0,  𝑒𝑙𝑠𝑒

(13) 

2.2.3. Combined Repulsive Force Function 

Combine the two improvements of 1.2.1 and 1.2.2, the improved repulsion function is obtained as 

shown in Equation 14: 
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𝐹𝑟𝑒𝑝(𝑠𝑖) =

{
 
 

 
 𝐹𝑟𝑒𝑝𝑥(𝑠𝑖) + 𝐹𝑟𝑒𝑝𝑣(𝑠𝑖), 𝑠𝑖 ≤ 𝜌0 ∩ 𝛼 ∈ (−

𝜋

2
,
𝜋

2
)

𝐹𝑟𝑒𝑝𝑥(𝑠𝑖), 𝑠𝑖 ≤ 𝜌0 ∩ 𝛼 ∉ (−
𝜋

2
,
𝜋

2
)

0, 𝑠𝑖 > 𝜌0

(14) 

3. Implementation of the Multi-Vehicle Formation Obstacle Avoidance Algorithm 

3.1. Control Framework 

 

Figure 2: Multi-vehicle formation obstacle avoidance process. 
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A modularized multi-vehicle formation obstacle avoidance algorithm based on an improved 

artificial potential field method was implemented in MATLAB to enhance system scalability; as 

illustrated in Figure 2, its workflow involves initializing parameters and forming the initial formation, 

calculating gravitational forces toward the target and repulsive forces from obstacles (with boundary 

extraction and potential merging), iteratively computing obstacle avoidance for the leader including 

angle/distance calculations, PID-controlled gravitational forces, position/velocity repulsive forces, 

resultant force integration, local optimum detection and random perturbation if trapped, adjusting the 

formation upon the leader's arrival at the next waypoint to derive followers' desired positions, and 

having followers replicate the leader's avoidance process with additional inter-vehicle repulsion 

calculations to prevent collisions. 

3.2. Evaluation Metrics 

This study employs three established evaluation metrics: the total formation obstacle avoidance 

iterations, the formation efficiency function, and the standard deviation of avoidance iterations. The 

first two metrics evaluate algorithm performance in specified obstacle environments, while the third 

assesses robustness in multi-obstacle scenarios.  

The formation efficiency function quantifies formation deformation during avoidance 

procedures—reduced deformation signifies superior performance as established by Zhang et al. [2019] 

[21]. Corresponding mathematical expressions are provided in Equation 15 and 16. 

𝑓2 = ∑((∑𝑒

𝑙

𝑖=1

)/𝐼)/𝑁 

𝑁

𝑛=1

(15) 

𝑁 = 𝐽/𝑚 (16) 

Here, 𝑖 represents the index of each follower, and 𝑒 indicates the deviation of the follower's actual 

position from the expected position. 𝐼 correspond to the total number of iterations in the formation 

obstacle avoidance process. To reduce computational complexity, this study uses a predetermined 

constant iteration interval 𝑚, set to 10. Sampling data at this interval can significantly alleviate the 

computational burden.  

The evaluation function f3 aims to reflect the energy consumption of the car during the obstacle 

avoidance process. The expression for the evaluation function 𝑓3 is shown in Equation 17: 

𝑓3 = 𝐸𝑜𝑐 + 𝐸𝑖𝑐 = 𝑘𝑜𝑐 ⋅ 𝐽 + 𝑘𝑖𝑐 ⋅ 𝑠 (17) 

Here, 𝐸𝑜𝑐 denotes operational energy consumption and 𝐸𝑖𝑐 represents idle energy consumption, 

which are respectively related to the number of iterations 𝐽  and obstacle avoidance 

distance 𝑠. 𝑘𝑜𝑐 and 𝑘𝑖𝑐 are their correlation coefficients, with specific values determined based on the 

relevant environment. 

However, in complex multi-obstacle environments, the aforementioned efficiency metrics may 

inadequately capture the algorithm's adaptability. Therefore, the standard deviation of iteration counts 

during formation obstacle avoidance is introduced as an additional evaluation function to assess 

algorithmic effectiveness and robustness (Yanbin et al., 2018) [22], where a smaller standard deviation 

indicates superior performance. The calculation is defined in Equation 18 and 19: 

𝑓4 = √∑(𝐽𝑘 − 𝐽)
2/𝐾

𝐾

𝑘=1

 (18) 
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𝐽 = (∑𝐽𝑘

𝐾

𝑘=1

)/𝐾 (19) 

Where 𝑘 represents the number of simulation experiments, whereas 𝐽𝑘 represents the total iteration 

count for the formation obstacle avoidance in the kth simulation.  

4. Simulation Experiments and Analysis 

4.1. Obstacle Avoidance under Preset Conditions 

In Scenario 1, three obstacle configurations were tested. In the first, an obstacle was collinear with 

the start and target points. as shown in Figure 3, the traditional APF method failed to complete 

obstacle avoidance for the three specific obstacle configurations. Although the improved IAPF 

method achieved partial avoidance, it still failed to reach the target within the maximum number of 

iterations (J = 500). In contrast, after incorporating PID control, the agents successfully reached the 

target under all three working conditions with iteration counts of J = 343, 381, and 351, respectively.  

 
Operation 1 Path                  Operation 2 Path                    Operation 3 Path 

Figure 3: Comparison of movement paths under different operating conditions 

4.2. Obstacle Avoidance in Random Environments 

Experiment 2 evaluates efficiency variations before and after PID control integration, addressing 

traditional methods' limitations in complex environments. A five-vehicle V-shaped formation 

(Vehicle 1 leader, Vehicles 2-5 followers) examines parameter adjustment impacts on obstacle 

avoidance performance. PID control refines residual parameters under configured conditions, with 

algorithmic performance variations observed across three randomized environments.  

Environment 1: 

The comparative experimental data shows that compared with the improved method, the proposed 

algorithm reduces the formation obstacle avoidance iterations (𝑓1) from 760 to 521, increasing the 

obstacle avoidance speed by 31.4% for faster mission completion; the formation efficiency function 

value (𝑓2) decreases from 15.9 to 5.9 (a 62.9% reduction), allowing passage through obstacle areas 

with a tighter formation; and the energy consumption function value (𝑓3) drops significantly from 

351.8 to 251.5 (a 28.5% decrease). as shown in Figure 4. 

Environment 2: 

Building upon Environment 1's obstacle configuration, Environment 2 increased the number of 

obstacles from 10 to 15 to further explore the impact of introducing improved PID control on 

algorithm performance in more complex obstacle scenarios.  
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IAPF path map IPID-APF path map 

 
Deviation distance map                                             Energy consumption map 

Figure 4:  Environment 1 maps 

Table 1: Setting parameters and corresponding function values in environment 

Method 𝐾𝑝 𝐾𝑖 𝐾𝑑 𝑘𝑝, 𝑘𝑖 𝑘𝑑 𝑓1 𝑓2 𝑓3 

IAPF 2 none none 5 none none 765 15.9 351.8 

IPID-APF 4.5 1 0.025 14 1 0.03 525 5.9 251.5 

Analysis of the data in Table 1 reveals that compared to the improved method, the proposed 

approach reduced the number of iterations (𝑓1) from 850 to 551 (a 35.1% reduction), lowered the 

formation efficiency function value (𝑓2) from 16 to 8.4 (a 47.5% decrease), and decreased the energy 

consumption function value (𝑓3) from 423.9 to 380.8 (a significant 10.2% drop). In Environment 3, 

where obstacle complexity was further increased, changes in evaluation function values were less 

pronounced compared to Environment 2. Nevertheless, all evaluation function values (f1, f2, f3) 

decreased significantly, indicating that the proposed method performs well in more complex obstacle 

environments and improves obstacle avoidance efficiency.as shown in Figure 5. 

Table 2: Setting parameters and corresponding function values in environment 

Method 𝐾𝑝 𝐾𝑖 𝐾𝑑 𝑘𝑝, 𝑘𝑖 𝑘𝑑 𝑓1 𝑓2 𝑓3 

IAPF 2 none none 5 none none 850 16.0 423.9 

IPID-APF 4.5 1 0.025 14 1 0.03 549 8.4 380.8 
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IAPF path map IPID-APF path map 

 
Deviation distance map Energy consumption map 

Figure 5: Environment 2 maps 

4.3. 100 Trials in Random Obstacle Environments 

To further verify the adaptability of the multi-vehicle formation obstacle avoidance method in 

random obstacle environments, after analysing two random scenarios in Experiment 2, Experiment 3 

conducted 100 trials to observe the changes in efficiency function values 𝑓1 and 𝑓2, thereby validating 

the reliability of the proposed method. 

The comparison of the variation curves of function values f1 and f2 of the improved algorithm in 

100 experiments is shown in the Figure 6: 

 
𝑓1values of 100 experiments 𝑓2values of 100 experiments 

Figure 6: Comparison of efficiency functions in random environment 
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Table 3: Setting parameters and corresponding function values in environment 

Method 𝑓1 𝑓2 𝑓3 𝑓4 

IAPF 525.4 14.83 423.9 51.88 

IPID-APF 850.1 8.63 318.1 35.30 

4.4. Discussion 

This paper conducted three groups of simulation experiments to comprehensively compare the 

performance of the traditional algorithm (APF), the improved algorithm (IAPF), and the proposed 

algorithm (IPID-APF) under various obstacle environments. 

Experiment 1 involved three specific obstacle scenarios and aimed to reveal the limitations of the 

traditional method. As shown in Figure 6, the traditional algorithm clearly failed to accomplish the 

obstacle avoidance task.  

As illustrated by the comparison plots In Figures 4–6 and the data analyses in Tables 1–3, the 

proposed algorithm outperformed others in most cases. The superior performance is reflected in the 

number of iterations, the degree of formation maintenance, and efficiency function values. These 

results highlight the importance of incorporating PID control to enhance algorithm performance. 

5. Conclusions 

This paper proposes a multi-vehicle formation obstacle avoidance algorithm that integrates PID 

control with an improved Artificial Potential Field (APF) method. By incorporating PID control into 

the potential field function calculation, the proposed method effectively addresses common issues 

such as unreachable targets, local minima, and obstacle navigation in dynamic environments. 

Simulation experiments were conducted across various randomly generated obstacle scenarios, 

comparing the proposed algorithm with both traditional and improved APF methods. Four commonly 

used evaluation metrics—total number of iterations, formation efficiency, energy consumption, and 

iteration standard deviation—were employed to assess performance. The results show that the 

proposed algorithm outperforms the alternatives, achieving improvements of 32.4%, 41.9%, 24.8%, 

and 32.0% in the respective evaluation functions. 

Therefore, the proposed approach provides an effective solution to the challenges of formation 

control and obstacle avoidance in complex environments involving multiple autonomous vehicles. 
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