Education, Science, Technology, Innovation and Life
Open Access
Sign In

Can We Build a Quantum Computer?

Download as PDF

DOI: 10.23977/acss.2022.060501 | Downloads: 25 | Views: 850

Author(s)

Weilun Yuan 1

Affiliation(s)

1 High School Affiliated to Remin University of China, Beijing, China

Corresponding Author

Weilun Yuan

ABSTRACT

This paper presented and evaluated obstacles and solutions for these problems in building quantum computers. From the perspective of hardware, problems such as processing and controlling qubits, the loss of qubits, the noisy environment, and precision are discussed. From the perspective of algorithms, this paper evaluates quantum algorithms for P&NP problems, Simon's problems, and noisy environments (this problem is discussed in both the aspect of hardware and the aspect of the algorithm). Finally, some future applications of quantum computers and their limitations are appraised. Even though many challenges hinder the construction of quantum computers, it's still able to build quantum computers which have great potential.

KEYWORDS

quantum computer, hardware, algorithm, application

CITE THIS PAPER

Weilun Yuan, Can We Build a Quantum Computer?. Advances in Computer, Signals and Systems (2022) Vol. 6: 1-7. DOI: http://dx.doi.org/10.23977/acss.2022.060501.

REFERENCES

[1] Wiesner, S. (1996). Simulations of Many-Body Quantum Systems by a Quantum Computer. https:// rxiv.org/pdf/quant-ph/9603028.pdf
[2] Barz, S. (2015). Quantum computing with photons: introduction to the circuit model, the one-way quantum computer, and the fundamental principles of photonic experiments. Journal of Physics B: Atomic, Molecular and Optical Physics, 48(8), 083001. https://doi.org/10.1088/0953-4075/48/8/083001
[3] Huang, H.-L., Wu, D., Fan, D., & Zhu, X. (2020). Superconducting quantum computing: a review. Science China Information Sciences, 63(8). https://doi.org/10.1007/s11432-020-2881-9
[4] Henriet, L., Beguin, L., Signoles, A., Lahaye, T., Browaeys, A., Reymond, G.-O., & Jurczak, C. (2020). Quantum computing with neutral atoms. Quantum, 4, 327. https://doi.org/10.22331/q-2020-09-21-327
[5] Wang, X.-L., Luo, Y.-H., Huang, H.-L., Chen, M.-C., Su, Z.-E., Liu, C., Chen, C., Li, W., Fang, Y.-Q., Jiang, X., Zhang, J., Li, L., Liu, N.-L., Lu, C.-Y., & Pan, J.-W. (2018). 18-Qubit Entanglement with Six Photons’ Three Degrees of Freedom. Physical Review Letters, 120(26). https://doi.org/10.1103/physrevlett.120.260502
[6] Naber, J. (2016). Magnetic atom lattices for quantum information. Undefined. https://www.semanticscholar.org/ paper/Magnetic-atom-lattices-for-quantum-information-Naber/85a13211ff85a31c77258a0bbb9736fb1edf49ee
[7] Saffman, M. (2016). Quantum computing with atomic qubits and Rydberg interactions: progress and challenges. Journal of Physics B: Atomic, Molecular and Optical Physics, 49(20), 202001. https://doi.org/10.1088/0953-4075/49/20/202001
[8] Jones, M. P. A., Beugnon, J., Gaëtan, A., Zhang, J., Messin, G., Browaeys, A., & Grangier, P. (2007). Fast quantum state control of a single trapped neutral atom. Physical Review A, 75(4). https://doi.org/10.1103/physreva.75.040301
[9] Deutsch, I. H., Brennen, G. K., & Jessen, P. S. (2000). Quantum Computing with Neutral Atoms in an Optical Lattice. Fortschritte Der Physik, 48(9-11), 925–943. https://arxiv.org/ftp/quant-ph/papers/0003/0003022.pdf
[10] Kok, P., Munro, W., Nemoto, K., Ralph, T., Dowling, J., & Milburn, G. (2006). Linear optical quantum computing. https://arxiv.org/pdf/quant-ph/0512071.pdf
[11] Chen, K., Li, C.-M., Zhang, Q., Chen, Y.-A., Goebel, A., Chen, S., Mair, A., & Pan, J.-W. (2007). Experimental Realization of One-Way Quantum Computing with Two-Photon Four-Qubit Cluster States. Physical Review Letters, 99(12). https://doi.org/10.1103/physrevlett.99.120503
[12] Ladd, T., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., & O'brien, J. (2009). Quantum Computing. https://arxiv.org/pdf/1009.2267.pdf
[13] Chuang, I. L., & Yamamoto, Y. (1995). Simple quantum computer. Physical Review A, 52(5), 3489 
[14] Streif, M., Leib, M., Wudarski, F., Rieffel, E., & Wang, Z. (2021). Quantum algorithms with local particle-number conservation: Noise effects and error correction. Physical Review A, 103(4). https://doi.org/10.1103/physreva.103. 042412
[15] Clarke, J., & Wilhelm, F. K. (2008). Superconducting quantum bits. Nature, 453(7198), 1031–1042. https://doi.org/10.1038/nature07128
[16] West, J. (2000). The Quantum Computer. https://www.xootic.org/wp/wp-content/uploads/2009/02/west.pdf
[17] Jurcevic, P., Javadi-Abhari, A., Bishop, L. S., Lauer, I., Bogorin, D. F., Brink, M., ... & Gambetta, J. M. (2021). Demonstration of quantum volume 64 on a superconducting quantum computing system. Quantum Science and Technology, 6(2), 025020. 
[18] Brown, N. C., Cross, A., & Brown, K. R. (2020, October 1). Critical faults of leakage errors on the surface code. IEEE Xplore. https://doi.org/10.1109/QCE49297.2020.00043
[19] Strikis, A., Datta, A., & Knee, G. C. (2019). Quantum leakage detection using a model-independent dimension witness. Physical Review A, 99(3). https://doi.org/10.1103/physreva.99.032328
[20] Ghosh, J., Fowler, A. G., Martinis, J. M., & Geller, M. R. (2013). Understanding the effects of leakage in superconducting quantum-error-detection circuits. Physical Review A, 88(6). https://doi.org/10.1103/physreva. 88.062329
[21] Reilly, D.J. (2019). Challenges in Scaling-up the Control Interface of a Quantum Computer. 2019 IEEE International Electron Devices Meeting (IEDM), 31.7.1-31.7.6. 
[22] Lloyd, S., De Palma, G., Gokler, C., Kiani, B., Liu, Z.-W., Marvian, M., Tennie, F., & Palmer, T. (2020). Quantum algorithm for nonlinear differential equations. https://arxiv.org/pdf/2011.06571.pdf
[23] Shor, P. W. (1994). Algorithms for quantum computation: discrete logarithms and factoring. Proceedings 35th Annual Symposium on Foundations of Computer Science. https://doi.org/10.1109/sfcs.1994.365700
[24] Vandersypen, L. M. K., Steffen, M., Breyta, G., Yannoni, C. S., Sherwood, M. H., & Chuang, I. L. (2001). Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature, 414(6866), 883–887. https://doi.org/10.1038/414883a
[25] Dash, A., Sarmah, D., Behera, B., & Panigrahi, P. (2018). Exact search algorithm to factorize large biprimes and a triprime on IBM quantum computer. https://arxiv.org/pdf/1805.10478.pdf
[26] Scott Aaronson, S. (2008). the limits of quantum. https://www.ime.usp.br/~pf/clippings/quantum/quantum-computing-200803.pdf
[27] https://qiskit.org/textbook/ch-algorithms/simon.html#algorithm
[28] Santoli, T., & Schaffner, C. (2017). Using Simon’s algorithm to attack symmetric-key cryptographic primitives. Quantum Information and Computation, 17(1&2), 65–78. https://doi.org/10.26421/qic17.1-2-4
[29] Stilck França, D., & García-Patrón, R. (2021). Limitations of optimization algorithms on noisy quantum devices. Nature Physics, 17(11), 1221–1227. https://doi.org/10.1038/s41567-021-01356-3
[30] Maciejewski, F. B., Baccari, F., Zimborás, Z., & Oszmaniec, M. (2021). Modeling and mitigation of cross-talk effects in readout noise with applications to the Quantum Approximate Optimization Algorithm. Quantum, 5, 464. https://doi.org/10.22331/q-2021-06-01-464
[31] Feynman, R. P. (1982). Simulating physics with computers. International Journal of Theoretical Physics, 21(6-7), 467–488. https://doi.org/10.1007/bf02650179
[32] Fedorov, A., Gisin, N., Beloussov, S., & Lvovsky, A. (2022). Quantum computing at the quantum advantage threshold: a down-to-business review. https://arxiv.org/pdf/2203.17181.pdf
[33] Mavroeidis, V., Vishi, K., D., M., & Jøsang, A. (2018). The Impact of Quantum Computing on Present Cryptography. International Journal of Advanced Computer Science and Applications, 9(3). https://doi.org/10.14569/ijacsa.2018.090354
[34] Gisin, N., Ribordy, G., Tittel, W., & Zbinden, H. (2008). Quantum cryptography. https://arxiv.org/pdf/quant-ph/0101098.pdf
[35] Cao, Y., Romero, J., Olson, J., Degroote, M., Johnson, P., Kieferová, M., Kivlichan, I., Menke, T., Peropadre, B., Sawaya, N., Sim, S., Veis, L., & Aspuru-Guzik, A. (2018). Quantum Chemistry in the Age of Quantum Computing. https://arxiv.org/pdf/1812.09976.pdf
[36] Bouland, A., Van Dam, W., Joorati, H., Kerenidis, I., & Prakash, A. (2020). Prospects and challenges of quantum finance. https://arxiv.org/pdf/2011.06492.pdf
[37] Arraut, I., Au, A., & Ching-biu Tse, A. (2020). Spontaneous symmetry breaking in quantum finance. EPL (Europhysics Letters), 131(6), 68003. https://doi.org/10.1209/0295-5075/131/68003
[38] Schuld, M., Sinayskiy, I., & Petruccione, F. (2014). An introduction to quantum machine learning. Contemporary Physics, 56(2), 172–185. https://doi.org/10.1080/00107514.2014.964942

Downloads: 19418
Visits: 296848

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.