Education, Science, Technology, Innovation and Life
Open Access
Sign In

Design of a Passive Terahertz Real-time Imaging System Based on Microwave Kinetic Inductance Detectors (MKIDs)

Download as PDF

DOI: 10.23977/autml.2025.060103 | Downloads: 10 | Views: 579

Author(s)

Ning Dong 1

Affiliation(s)

1 Industries Training Centre, Shenzhen Polytechnic University, Shenzhen, 518055, China

Corresponding Author

Ning Dong

ABSTRACT

Terahertz imaging holds great potential in the field of security inspection. To meet this demand, this paper designs and constructs a passive terahertz real-time imaging system based on a MKID (Microwave Kinetic Inductance Detector) array and a spatial resolution layer. The system consists of an MKID detector array module, a spatial resolution layer module, a microwave signal coupling and amplification module, a signal mixing and acquisition module, an image reconstruction and processing module, a THz wave source and calibration module, a cryogenic superconducting module, and a microwave signal source and excitation module. Through the design of the MKID detector array, this paper enables the detection of the full frequency band of terahertz waves, significantly improving the sensitivity and accuracy of the detection system. By introducing the spatial resolution layer, spatial information is converted into time-domain signals, thus achieving spatial imaging of terahertz waves and enhancing the spatial resolution of the system. By adopting a digital acquisition system and fast signal processing algorithms, real-time acquisition and analysis of signals can be realized, further enhancing the real-time performance of the system.

KEYWORDS

MKID, Spatial Resolution, Terahertz Imaging

CITE THIS PAPER

Ning Dong, Design of a Passive Terahertz Real-time Imaging System Based on Microwave Kinetic Inductance Detectors (MKIDs). Automation and Machine Learning (2025) Vol. 6: 23-30. DOI: http://dx.doi.org/10.23977/autml.2025.060103.

REFERENCES

[1] Li, J., Zhang, W., Miao, W., & Shi, S. C. (2017). Development of Ultra-High Sensitivity Terahertz Superconducting Detection Technology. Chinese Optics (Chinese and English), 10(1), 122-130. 
[2] C. Natarajan, M. G. Tanner, R. H. Hadfield, Superconducting nanowire single-photon detector systems for quantum optics applications, Superconductor Science and Technology, 25(6), 063001 (2012).
[3] A. J. Miller, S. W. Nam, J. M. Martinis, et al., Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination, Applied Physics Letters, 83(4), 791-793 (2003).
[4] Zmuidzinas, J. (2012). Superconducting Microresonators: Physics and Applications. Annual Review of Condensed Matter Physics, 3(1), 169–198.
[5] Rosenberg, D., Nam, S., Hiskett, P., Nordholt, J., Peterson, C., & Hughes, R. (2006). Long-distance decoy-state quantum key distribution in optical fiber. Applied Physics Letters, 88(2), 021108.
[6] Sun, Q., Mao, Y., Chen, S., Xie, L., Zhou, H., & Duan, X. (2016). Giant nonlinear optical response in plasmonic nanostructures with quantum wells. Nature Photonics, 10(10), 671–676.
[7] Zhong, H., Wang, H., Deng, Y., Chen, M., Peng, L., Luo, Y., Qin, J., Wu, X., Li, S., Wang, Y., & Pan, J. (2020). Quantum computational advantage using photons. Science, 370(6523), 1460–1463.
[8] Lita, A. E., Miller, A. J., & Nam, S. W. (2008). Counting near-infrared single-photons with 95% efficiency. Optics Express, 16(5), 3032–3040.
[9] Fukuda, D., Fujii, G., Numata, T., Yoshizawa, A., Tsuchida, H., Fujino, H., Sato, H., Kirigaya, K., Yabuno, M., & Sasaki, M. (2011). High-efficiency superconducting single-photon detectors for near-infrared wavelengths. IEEE Transactions on Applied Superconductivity, 21(3), 241–244.
[10] Heinz, E., Müller, A., Schmidt, L., & Wagner, S. (2012). Development of Passive Submillimeter-Wave Video Imaging Systems for Security Applications. In Millimetre Wave and Terahertz Sensors and Technology V (Vol. 8544]). SPIE.
[11] Clem, J. R. (2013). Critical state in type-II superconductors with arbitrary cross-section and general longitudinal current. Journal of Applied Physics, 113(1), 013910.
[12] Galitzki, N., Ade, P., Angilè, F. E., Ashton, P., Beall, J., Becker, D., Bradford, K. J., Che, G., Cho, H.-M., Devlin, M., Dober, B., Fissel, L. M., Fukui, Y., Gao, J., Groppi, C., Hillbrand, S., Hilton, G., Hubmayr, J., Irwin, K., ... Zhu, N. (2014). The next-generation BLASTPol experiment. Journal of Astronomical Instrumentation, 3(2), 1440001.
[13] Say, J., Bock, C., Brug, S., Delderfield, J., Ferlet, M., & Ouaknine, J. (2014). The Sentinel-5 Precursor Instrument: Status and Performance of the UVNS Spectrometer. In Proceedings of SPIE: International Society for Optical Engineering (Vol. 9153, p. 915304). SPIE.  
[14] Monfardini, A., Swenson, L. J., Bideaud, A., Benoit, A., Cruciani, A., Camus, P., Hoffmann, C., Desert, F. X., Doyle, S., Ade, P., Mauskopf, P., Tucker, C., & Roesch, M. (2010). A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope. Astronomy & Astrophysics, 521, A29.
[15] Rowe, S., Pascale, E., Doyle, S., Brien, T., Hargrave, P., Mauskopf, P., & Ade, P. (2016). A scalable readout for microwave kinetic inductance detector arrays. Review of Scientific Instruments, 87(3), 033105.

Downloads: 3722
Visits: 167069

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.