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Abstract: We propose a mathematical approach to reduce irregular artifacts in 4d ct images by 
fitting the generated displacement vector field (dvfs) from deformable image registration(dir) in 
three temporal and one spatial dimensions through a linear polynomial fitting model, and then use 
principal component analysis (pca) to decompose the fitted dvfs into a linear combination of the 
main motion basis to represent conventional respiratory motion. The “Synthetic” ct image of the 
selected phase is generated by deforming the reconstructed dvfs with the reference ct 00 image. 
Preliminary results show that this method has the potential to extract regular breathing movements 
from patients' 4d ct images, and can recover tumor organs and tissues caused by irregular breathing 
movements during 4d ct image acquisition. Calculate the correlation coefficients(cc) and mean of 
five patients. Of all the patients ,at superior-inferior(si), anterior-posterior(ap) and medial-latera(ml) 
mean values of 0.86±0.02, 0.86±0.02 and 0.86±0.02, respectively.  

1. Introduction 
Four-dimensional computed tomography (4d ct) has been widely used to monitor patient specific 

respiratory motion for determining individual safety margin in radiation therapy.[1] Usually, the 
reconstructed 4d ct images suffer from severe or mild artifacts mainly caused by irregular motion 
during image acquisition. In recent years, many methods have been produced to reduce or correct 
motion artifacts, but none of them can be applied to all imaging cases.[2] Therefore, the purpose of 
this study is to propose a method of principal component analysis (pca) combined with linear 
polynomial fitting model to model the displacement vector field (dvfs) obtained from deformable 
image registration (dir).[3] The main goal of this study is to reduce the motion artifacts in 4d ct 
images. 

Image artifacts seriously reduce the quality of ct images, sometimes doctors can’t diagnose or 
cause misdiagnoses, and even lead to medical accidents.[4] Motion artifacts can be suppressed 
without additional hardware.[5] It is more efficient to process moving artifacts by extracting dvfs 
from images than other methods.[6] Define the cropping boundary box in the three-dimensional 
viewing directions: coronal, sagittal and transverse. [7]The voxel size in the three directions is 
0.9766mm,0.9766mm ,2mm respectively. 

2. Materials and Methods 

2.1 Imaging Study 
The reconstructed 4d ct images were classified into 10 respiratory stages, of which 0% were 

corresponding to the final inspiratory phase and 50% to the final exhalation. [8]The imaging 
parameters are as follows: voltage / current: 120 kv / 290 ma, slice thickness: 2.5 mm, rack rotation: 
0.5 s per cycle, reconstruction matrix: 512 × 512, field of view (fov): 450 ≤ 500 mm. 
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Abbreviation: m, male; f, female; nsclc, non-small cell lung cancer; sclc, small cell lung cancer; r-l, 

right-lower; l-l, left-lower; l-u, left, upper; r-u, right-upper ；ptv, planning target volume.   
 

2.2 4D CT Reconstruction 
In order to determine the respiratory signal, each ct image is processed to determine the body 

outline. body area (ba), which is used as a respiratory substitute in 4d ct technology, is defined as the 
number of pixels in the body outline. Then, by drawing ba as a function of image acquisition time, a 
separate respiratory curve is generated at each slice position.[9] The complete respiratory signal is 
obtained by continuously combining each respiratory curve according to the image acquisition time, 
and then the low frequency component of the signal is removed, which is caused by the change of 
anatomical structure. In order to reconstruct the 4d ct, the automatic search algorithm is used to detect 
the respiratory peak from the complete respiratory signal, and then manual correction is carried out to 
remove the wrong peak detection.[10] The peak is assigned to 50% of the phase and the rest of the 
phase is calculated by linear interpolation. If the phase is missing, the nearest phase and the 
corresponding ct image are used to reconstruct the 4d ct. [11]According to the respiratory phase, the 
two-dimensional film ct images were recombined into 10 stages. In addition, the first two images in 
the image series at each slice position are excluded for reconstruction, which allows the ct signal to 
reach a steady state (that is, a consistent signal). All image processing and data analysis are carried 
out using internal programs implemented in matlab 2018a. 

 
2.3 Deformable Registration Across 4D CT image 

Figurer 1 shows the workflow of generating "synthetic" 4d ct based on linear polynomial fitting 
model and pca in this study. 

 
Figure1: Use our method to generate a workflow for synthetic 4d ct. 

 Firstly, the displacement vector fields (dvfs). Is obtained from the deformable image 
registration (dir) between the reference-phase image and other images. Secondly, the linear 
polynomial fitting model is used to fit dvfs into three temporal and spatial dimensions. 
Thirdly, principal component analysis (pca) is used to decompose each dvfs into linear 
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combinations based on motion, and its cross subspace is proved to be sufficient to capture 
the main changes of respiratory motion. Finally, the "synthetic" 4d ct is generated by using 
the reconstructed dvfs to deform the reference-phase image.[12] 

 
2.4 DVFS Reconstruction 

In this study, the obtained dvfs is optimized to solve the artifacts existing in the 4d ct image, and all 
phase images are transformed into reference images (t = 0%) to calculate the dvfs. Considering the 
entire pixel during the 4d ct registration process. The displacement continuity at the corresponding 
phase throughout the breathing cycle uses a linear polynomial fitting model to fit the displacement 
trajectory of each pixel.[13] Then use the same polynomial to fit the displacement of each phase at 
adjacent pixels in the three spatial dimensions of x, y and z to correct the potential discontinuous 
motion introduced by time fitting, so the obtained dvfs(f) and The corresponding time fitting (ft) and 
space fitting (fs) calculation formulas are: 

 
                     (1 )

t s
f f fλ λ= + −                           (1) 

 
For two images i and j, while i is the moving image (or reference image) and j is the fixed image 

(or target image), deformable image registration is to computed the deformation vector field v in 
order to optimize the system energy equation:[14] 

 
2( ( ), ) ( )e s v i j d r v dαΩ Ω= Ω + Ω∫ ∫                                    (2) 

 
Where v is the deformation vector field, also commonly referred to as the playground, light flow, 

etc. v(i) is the deformed motion image i, s is the similarity function, r is the smoothness constraint 
function, the s is the image domain, and α is a constant.                                      

Determines that motion images and fixed images are matched and calculated. The most important 
difference between the two sports fields is that the backward sports field is moving the sports field 
backwards is defined on the voxels of the fixed image, define a forward motion field on a voxel of a 
moving image 

Linear model polynomial: 
 

1 2 3 4 ( 1) ( 1)
( ) * * ( 1) * ( 2) * ( 3).... * 2 *

n n n
f x p x n p x n p x n p x n p x p x p∧ ∧ ∧ ∧ ∧ ∧

− += + − + − + − + + +     (3) 
 

2.2 Reduce Artifacts In 4D CT Images 
After the operation of fitting dvfs with covariance, mean variance, eigenvalue eigenvector and so 

on, it is found that its three eigenvalues can be used to represent its main motion. 
The principal component analysis (pca) was used in this study to inhibit or replace artifacts and 

errors in motion-independent dvfs. The relationship between the dvfs at time t and the number of 
voxels n is:[15] 

1

( ) [ ( )]
n

T
iu t u t= ∑


                                           (4) 

Because it is fitted in the three spatial dimensions of x, y and z, the 𝑢𝑢�⃗ 𝑖𝑖(𝑡𝑡) of each voxel can be 
decomposed into:                                                       

 
( ) ( ) ( ) ( )

x y zi i i iu t u t u t u t= + +
   

                                        (5) 

 
Combine formula (4) and formula (5) and transform into[14]: 
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                            (6) 

 
Calculate the covariance matrix of the fitted dvfs in the three directions of x, y and z the formula is: 

cov cov cov cov
x y z

= + +   

                      

1

1
cov ( ( ) )( (i)- )

1

n
T

x
d i d d d

n

- ′ ′= -
- ∑

d d d d

                           (7) 

Where 𝑑𝑑′���⃗  denotes the fitted column vectors between phase image and reference image and vector 
𝑑𝑑 denotes the average of these column vectors.                                                                                            

Covx, covy and covz represent the covariance in the x, y and z direction, respectively. Similarly, 
we can get covy and covz. 

In this study, three main motion bases and corresponding projection coefficients are used to 
reconstruct the original fitting dvfs in each direction, thus the complexity can be significantly reduced 
without losing the main motion information. 

3. Results 
We get near real-time images from cine-ct images. We take the trajectory of the lung model 

determined by the cine-ct image as the basic fact and compare with the model obtained by 4d ct. 
Use matlab software to match reference images and other images, select ct 00 as the reference 

image, and other images as motion images. Refactoring dvfs using linear polynomial fit models and 
pca, using "synthetic" dvfs to reconstruct 4d ct images. 

 
Figure 2: 4d ct Display Example. From the tumor movement of ct00-ct90 indicated by the red arrow, 

the tumor movement in the whole respiratory cycle can be seen from the dotted line. 
 

Figureure3 show comparison of tumor motion trajectories from cine-ct and ‘synthetic’ 4d ct in 
three orthogonal directions (si, ap, and ml). 
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Figure 3: From the patient's starting inhale to the end of the exhalation is a breathing cycle, the entire 
breathing cycle is divided into ten phases (00-90). We take 40 for the breathing end 90 for the end of 

the exhalation. 
 

Figureure 4 show the comparison of dvfs in the target face and before fitting after processing with 
the pca method using linear fit. From the red mark of Figureure 3(a) we can see that the dvfs before 
processing has obvious motion artifacts, after linear fitting and principal component analysis model 
processing can be seen from Figureure 3(b) motion artifacts have been basically eliminated. 

 

 
(a)                                     (b) 

FIGURE4: Use linear polynomial and principal component analysis (pca) models to compare dvfs on 
a target face for specific slices before and after processing. 

 
We analyzed five patients' 'synthetic' ct and cine-ct to obtain their correlation coefficients(cc) in 

three orthogonal directions(si,ap and ml). 
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Table2: Correlation coefficients(cc) and mean for five patients in three orthogonal directions 

(si,ap and ml) 

4. Summary 
In this work, we used a mathematical method that combines linear polynomial fiting models with 

master component analysis, which is mainly used to reduce motion artifacts in 4d ct images. We 
compared the motion trajectory of the original 4d ct image with the synthetic 4d ct image to verify the 
motion accuracy of the “synthetic” 4d ct image, and the results show that the proposed method can be 
used to reduce motion artifacts without losing the information of breathing movement. 
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