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Abstract: To address the issues of low resource utilization efficiency and poor multi-

objective coordination in traditional planting scheme optimization, by integrating the 

particle swarm algorithm with machine learning technology, an improved particle swarm 

algorithm that incorporates adaptive inertia weight, chaotic disturbance mechanism, and 

Pareto elite retention strategy is proposed. A multi-objective planting scheme optimization 

model is constructed. Taking a typical agricultural area as the empirical object, multi-

dimensional data such as soil, climate, and market are collected. The decision variables 

such as crop types, planting area, and irrigation strategy are optimized through the 

improved algorithm. The experimental results show that the convergence speed of the 

improved algorithm is 32.6% and 21.8% higher than that of the standard PSO and MOPSO 

algorithms respectively. The optimal planting scheme generated can increase the total crop 

yield of the region by 15.3%, improve the water resource utilization rate by 28.5%, and 

increase the economic benefits by 19.7%. This research verifies the effectiveness and 

superiority of the improved particle swarm algorithm in multi-objective planting 

optimization, providing a scientific basis and technical support for agricultural 

modernization planting decisions. 

1. Introduction 

During the process of agricultural modernization transformation, the optimization of planting 

systems faces the concurrent demands for resource intensive utilization, capacity enhancement, and 

ecological sustainable development[1]. Traditional planting schemes mostly rely on empirical 

decision-making, which have problems such as poor multi-objective coordination and low resource 

allocation efficiency, and are difficult to adapt to the complex and variable agricultural production 

scenarios. The multi-objective optimization theory provides an effective paradigm to solve this 

predicament. The particle swarm algorithm, due to its simple structure and high optimization 

efficiency, has shown significant application potential in agricultural optimization decision-

making[2]. Combined with machine learning technology, it can further enhance the data-driven 
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capability and prediction accuracy of the optimization model. Therefore, conducting research on 

multi-objective planting scheme optimization based on the improved particle swarm algorithm is of 

significant theoretical and practical significance for promoting the transformation of agricultural 

production from empirical decision-making to intelligent decision-making, and improving the 

efficiency and comprehensive benefits of agricultural resource utilization[3]. 

By reviewing the existing research results, it can be seen that multi-objective planting scheme 

optimization has gradually evolved from traditional linear programming methods to intelligent 

algorithms [4]. Particle swarm algorithms and genetic algorithms have been widely applied in the 

optimization research of crop layout, water and fertilizer regulation, etc. At the same time, scholars 

have proposed improvement directions such as parameter adaptive adjustment and mixed search 

strategies to address the shortcomings of premature convergence and insufficient solution 

distribution uniformity of the particle swarm algorithm [5]. The integration of machine learning and 

optimization algorithms has become an important research paradigm in agricultural data-driven 

optimization. However, existing research still has obvious gaps [6]. For example, the improvements 

of the particle swarm algorithm mainly focus on a single defect, have insufficient adaptability to 

multi-objective collaborative optimization scenarios, have a low coupling degree between the 

optimization model and the actual planting scenario, and the targetedness and practicality of 

empirical research need to be strengthened [7]. These problems provide a clear entry point for this 

study.  

2. Methods 

2.1 Basic Theory and Supporting Technologies 

The Particle Swarm Optimization (PSO) algorithm is inspired by the foraging behavior of bird 

flocks. It achieves optimization through the collaboration and information sharing among particles 

in the group. In the standard PSO, each particle represents a potential solution to the optimization 

problem[8]. It updates its own velocity and position by tracking the individual best solution (pbest) 

and the global best solution (gbest). The mathematical models are as shown in Equations (1) and (2): 

𝐯𝑖,𝑑
𝑡+1 = 𝜔𝐯𝑖,𝑑

𝑡 + 𝑐1𝐫1(𝑝𝑏𝑒𝑠𝑡𝑖,𝑑
𝑡 − 𝑥𝑖,𝑑

𝑡 ) + 𝑐2𝐫2(𝑔𝑏𝑒𝑠𝑡𝑑
𝑡 − 𝑥𝑖,𝑑

𝑡 )                                (1) 

In Equation (1), v represents the velocity of the i-th particle in the d-dimensional space during 

the (t + 1)th iteration; ω is the inertia weight, which is used to balance the global exploration and 

local exploitation capabilities; c and c are learning factors, respectively representing the learning 

ability of the particle for the individual optimal solution and the global optimal solution; r and r are 

random numbers within the range of [0, 1]; x is the position of the i-th particle in the d-dimensional 

space during the tth iteration[9]; pbest is the individual optimal position of the i-th particle in the d-

dimensional space; gbest is the global optimal position of the entire particle swarm in the d-

dimensional space. 

𝑥𝑖,𝑑
𝑡+1 = 𝑥𝑖,𝑑

𝑡 + 𝑣𝑖,𝑑
𝑡+1                                                                    (2) 

Equation (2) represents the particle position update formula. x represents the position of the i-th 

particle in the d-dimensional space during the (t + 1)th iteration. The standard PSO has inherent 

drawbacks in multi-objective optimization scenarios, mainly manifested as: premature convergence, 

prone to getting stuck in local optimal solutions; insufficient uniformity in the distribution of multi-

objective solutions within the set, making it difficult to cover the complete Pareto frontier; and the 

optimization efficiency declines in the later iterations, resulting in a slower convergence speed. 

99



2.2 Improvement of the Design and Verification of Particle Swarm Algorithm 

The standard PSO has three core drawbacks in multi-objective optimization: ①  premature 

convergence, where the fixed inertia weight leads to insufficient global exploration in the early 

stage or insufficient local development ability in the later stage, easily resulting in local optimum; 

② insufficient uniformity of solution distribution, during the particle update process, particles tend 

to converge towards the local optimum, making it difficult to cover the complete Pareto frontier; ③ 

slow convergence speed in the later iterations, where the decay of particle velocity leads to a 

decrease in optimization efficiency. To address these drawbacks, this study makes improvements in 

three dimensions: inertia weight, learning factor, and search strategy, and constructs an improved 

PSO algorithm (Improved PSO, IPSO) suitable for multi-objective planting scheme 

optimization[10]. 

The core improvement strategy employs a coupling iterative process and the dynamic inertia 

weight of particle fitness to balance the global exploration and local exploitation capabilities at 

different iterative stages, as shown in Equation (3): 

𝜔(𝑡) = 𝜔max −
(𝜔max−𝜔min)⋅𝑡

𝑇max
⋅ exp (−

𝑓𝑖𝑡𝑖(𝑡)−𝑓𝑖𝑡min(𝑡)

𝑓𝑖𝑡max(𝑡)−𝑓𝑖𝑡min(𝑡)
)                                     (3) 

In Equation (3), ω(t) represents the inertia weight for the t-th iteration; ω and ω are the maximum 

and minimum values of the inertia weight (in this study, they are set to 1.2 and 0.4 respectively); T 

is the maximum number of iterations; fit(t) is the fitness value of the i-th particle in the t-th iteration; 

fit(t) and fit(t) are the maximum and minimum fitness values in the t-th iteration. This mechanism 

introduces the difference in particle fitness through an exponential function, allowing particles with 

poorer fitness to maintain a larger inertia weight to enhance global exploration, and particles with 

better fitness to reduce the inertia weight to strengthen local exploitation. 

The factor-based collaborative learning adopts a dynamic learning factor strategy, causing c to 

decrease with the iterative process and c to increase with the iterative process, achieving the 

transition from "individual learning as the main approach" to "group learning as the main approach", 

as shown in Equations (4) and (5): 

c1(t) = c1,max −
(c1,max−c1,min)⋅t

Tmax
                                                         (4) 

c2(t) = c2,min +
(c2,max−c2,min)⋅t

Tmax
                                                         (5) 

In Equations (4) and (5), c(t) and c(t) represent the learning factors for the t-th iteration; c and c 

are the maximum and minimum values of c (in this study, 2.5 and 1.0 are taken); c and c are the 

maximum and minimum values of c (in this study, 2.5 and 1.0 are taken). 

To break through the local optimal trap, Logistic chaotic perturbation is introduced to the particle 

positions in the later stages of the iteration, as shown in Equations (6) and (7): 

𝑦𝑖,𝑑(𝑡) = 4𝑦𝑖,𝑑(𝑡 − 1)[1 − 𝑦𝑖,𝑑(𝑡 − 1)]                                                    (6) 

𝑥𝑖,𝑑
𝑡+1 = 𝑥𝑖,𝑑

𝑡 + 𝛼 ⋅ 𝑦𝑖,𝑑(𝑡) ⋅ (𝑥𝑚𝑎𝑥,𝑑 − 𝑥𝑚𝑖𝑛,𝑑)                                                 (7) 

Equation (6) represents the Logistic chaotic mapping formula, where y(t) is the chaotic variable 

of the i-th particle in the d-dimensional space at the t-th iteration. The initial value y(0) belongs to 

the range (0, 1) and is not 0.25, 0.5, or 0.75. Equation (7) is the position update formula after 

introducing chaotic perturbation, where α is the perturbation intensity (in this study, it is set to 0.05), 

and x and x represent the maximum and minimum values of the d-th decision variable, respectively. 

Build an elite solution set to store the Pareto optimal solutions. After each iteration, new Pareto 
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optimal solutions are selected through non-dominated sorting and added to the elite solution set. If 

the size of the elite solution set exceeds the preset threshold, redundant solutions are eliminated 

using the crowding degree calculation to maintain the diversity and uniformity of the solution set. 

The crowding degree calculation is shown in Equation (8): 

𝐶𝐷𝑡 = ∑
𝑓𝜅(𝑖+1)−𝑓𝜅(𝑖−1)

𝑓𝜅
max−𝑓𝜅

min
𝑚
𝜅=1                                                                    (8) 

In Equation (8), CD represents the congestion degree of the i-th solution; f(i+1) and f(i-1) are the 

objective values of the (i+1)-th and (i-1)-th solutions under the k-th objective function; f and f 

represent the maximum and minimum values of the k-th objective function, respectively. 

Based on the above improvement strategies, the speed and position update formulas of IPSO are 

ultimately determined as Equations (9) and (10): 

𝑣𝑖,𝑑
𝑡+1 = 𝜔(𝑡)𝑣𝑖,𝑑

𝑡 + 𝑐1(𝑡)𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖,𝑑
𝑡 − 𝑥𝑖,𝑑

𝑡 ) + 𝑐2(𝑡)𝑟2(𝑔𝑏𝑒𝑠𝑡𝑑
𝑡 − 𝑥𝑖,𝑑

𝑡 )                         (9) 

𝑥𝑖,𝑑
𝑡+1 = {

? 𝑥𝑖,𝑑
𝑡 + 𝑣𝑖,𝑑

𝑡+1, 𝑡 < 0.8𝑇max

? 𝑥𝑖,𝑑
𝑡 + 𝑣𝑖,𝑑

𝑡+1 + 𝛼 ⋅ 𝑦𝑖,𝑑(𝑡) ⋅ (𝑥max,𝑑 − 𝑥min,𝑑), 𝑡 ≥ 0.8𝑇max
                        (10) 

The implementation process of IPSO is shown in Figure 1. 

 

Figure 1: The implementation process of IPSO 
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2.3 Construction of a multi-objective planting scheme optimization model 

Decision variables: Suppose there are n types of crops planted in the study area. The decision 

variable vector is defined as x = [A, A,..., A, D, D,..., D, W, W,..., W], where A represents the 

planting area of the i-th crop (hm²), D represents the planting density of the i-th crop (plants/hm²), 

and W represents the irrigation volume of the i-th crop (m³/hm²). 

Objective function: Based on the actual situation of planting production, four conflicting 

objective functions are constructed to achieve multi-dimensional collaborative optimization: 

(1) Maximization of total output: f(x) = Σ A · Y(D,W), where Y(D,W) is the unit area yield of 

the i-th crop (kg/hm²), predicted by the random forest regression model, as shown in Equation (11): 

𝑌𝑖(𝐷𝑖 ,𝑊𝑖) = 𝑅𝐹(𝐷𝑖 ,𝑊𝑖 , 𝑆𝑖 , 𝐶𝑖 , 𝑇𝑖)                                                    (11) 

In Equation (11), RF represents the random forest regression model, S represents the soil fertility 

grade, C represents the fertilizer application amount (kg/hm²), and T represents the average 

temperature (℃). 

(2) Maximization of economic benefits: f(x)=ΣA·[Y·P-(C·P+W·P+L)], where P represents the 

market price of the i-th crop (in yuan/kg), P is the fertilizer price (in yuan/kg), P is the water fee (in 

yuan/m³), and L is the unit area labor cost of the i-th crop (in yuan/hm²). 

(3) Minimization of water resource consumption: f(x) = ΣA·W. 

(4) Minimization of fertilizer pollution (ecological benefit): f(x)=ΣA·C·ε, where ε represents the 

fertilizer loss coefficient for the i-th type of crop.  

Constraints: 

{
 
 

 
 
∑ 𝐴𝑖
𝑛
𝑖=1 ≤ 𝐴𝑡𝑜𝑡𝑎𝑙

𝑊𝑖 ≥ 𝑊̄𝑖,min,𝑊𝑖 ≤ 𝑊̄𝑖,max

𝐷𝑖 ≥ 𝐷𝑖,min, 𝐷𝑖 ≤ 𝐷𝑖,max
𝐴𝑖 ≥ 0, 𝐶𝑖 ≥ 0

𝑄𝑤𝑎𝑡𝑒𝑟 ≥ ∑ 𝐴𝑖
𝑛
𝑖=1 ⋅ 𝑊𝑖

                                                        (12) 

In the formula, A represents the total planting area of the study region (hm²), W and W represent 

the minimum and maximum irrigation amounts of the i-th type of crop respectively, D and D 

represent the minimum and maximum planting densities of the i-th type of crop respectively, and Q 

represents the total available water resources in the study region (m³). 

3. Results and Discussion 

3.1 Empirical Area Overview and Data Foundation 

A certain agricultural main production area in the North China Plain (geographical coordinates: 

36°20′ - 36°50′ N, 115°40′ - 116°10′ E) was selected as the empirical area. This area has a 

temperate monsoon climate, with an average annual temperature of 13.5℃, an annual precipitation 

of 550 - 650mm, with most of the precipitation concentrated in summer, and a frost-free period of 

205 days. It meets the growth requirements of various crops such as wheat, corn, and cotton. The 

total planting area of this region is 1200 hm². The soil type is mainly loam, with soil organic matter 

content ranging from 1.2% to 1.8%, and soil pH value ranging from 6.8 to 7.5. The water resources 

are mainly surface water and shallow groundwater, and the total available water resources are 

approximately 1.8×10⁷m³. Currently, the planting structure of this area is mainly wheat-corn 

rotation, with a small amount of cotton intercropped. There are problems such as low water 

resource utilization efficiency (irrigation water utilization coefficient is only 0.52) and unbalanced 
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economic benefits (unit area net profit difference reaches 3000 yuan/hm²). There is a practical 

demand and research value for optimizing the planting scheme. 

The data collection scope covers multi-dimensional time-series data of the empirical area from 

2014 to 2023. It is obtained by integrating field research and official statistics. The core data types 

and processing methods are as follows: We collected four categories of data to build a 

comprehensive agronomic dataset.① Soil data: We sampled 120 plots using the five-point method 

and measured physical-chemical indicators such as soil organic matter, total nitrogen, available 

phosphorus, and rapidly available potassium. After laboratory analysis, we imputed missing values 

with the K-nearest-neighbour algorithm and removed outliers by means of the box-plot rule 

(interquartile-range multiplier = 1.5).② Meteorological data: We downloaded 10-year monthly 

time-series (120 records) for annual precipitation, mean temperature, accumulated temperature, and 

sunshine hours from the regional meteorological service. The few missing months were filled by 

linear interpolation.③ Crop data: We gathered planting area, density, irrigation volume, fertiliser 

rate, and yield per unit area for wheat, maize, and cotton over 10 years in three townships, giving 90 

samples (3 crops × 10 years × 3 townships).④ Market and economic data: We obtained crop market 

prices, fertiliser unit prices, water charges, and labour costs for the same period from the local 

Bureau of Agriculture and Rural Affairs and the Bureau of Statistics. There are 120 records for 10 

years × 12 economic indicators. After data preprocessing, the mutual information method is used to 

screen the key features affecting crop yield. The results show that planting density, irrigation 

volume, soil organic matter content, average temperature, and fertilizer application volume are the 

core influencing factors (mutual information values are all > 0.6), and they are used as input 

features for the subsequent random forest regression model. All input data is normalized using Z-

Score to ensure the uniformity of data dimensions. Table 1 shows the overview of the core data 

after preprocessing. 

Table 1: Overview of the preprocessed core data 

Data Type Specific Indicator Sample Size Value Range 

Soil Data Soil Organic Matter Content (%) 120 1.2-1.8 

Climate Data Annual Precipitation (mm) 120 550-650 

Crop Data Wheat Planting Density (plants/hm²) 90 225×10³-300×10³ 

Economic Data Wheat Market Price (CNY/kg) 120 2.5-3.2 

3.2 Optimization results of multi-objective planting schemes 

Based on the five standard multi-objective test functions ZDT1, ZDT2, ZDT3, DTLZ1, and 

DTLZ2, the performance of four algorithms, namely IPSO, standard PSO, MOPSO, and NSGA-III, 

was tested. Each algorithm was run independently for 30 times, and the mean ± standard deviation 

of the three core indicators GD, IGD, and S were used as the evaluation basis. The results are 

shown in Table 2. 

Table 2: Improvement in Algorithm Performance Comparison Results 

Test Function 
Evaluation 

Metric 
Standard PSO MOPSO NSGA-III 

IPSO (This 

Study) 

ZDT1 

(Convex 

Front) 

GD 0.086±0.012 0.052±0.008 0.045±0.006 0.028±0.004 

IGD 0.102±0.015 0.068±0.009 0.056±0.007 0.035±0.005 

S 0.68±0.05 0.79±0.04 0.85±0.03 0.92±0.02 

DTLZ2 

(Non-convex 

Front) 

GD 0.105±0.018 0.069±0.011 0.058±0.009 0.036±0.006 

IGD 0.128±0.021 0.085±0.013 0.072±0.010 0.042±0.007 

S 0.62±0.06 0.75±0.05 0.82±0.04 0.90±0.03 
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As shown in Table 2, among all the test functions, the GD and IGD indicators of the IPSO 

algorithm are significantly lower than those of the other three algorithms, while the S indicator is 

significantly higher than the others. Taking the ZDT1 function as an example, the GD indicator of 

IPSO is 67.4% lower than that of the standard PSO, 46.2% lower than that of MOPSO, and 37.8% 

lower than that of NSGA-III; the IGD indicator is 65.7% lower than that of the standard PSO, 48.5% 

lower than that of MOPSO, and 37.5% lower than that of NSGA-III; the S indicator is 35.3% higher 

than that of the standard PSO, 16.5% higher than that of MOPSO, and 8.2% higher than that of 

NSGA-III. This indicates that the IPSO algorithm effectively improves convergence and the 

uniformity of solution distribution through adaptive inertia weight and chaotic perturbation 

improvement strategies. Especially in non-convex frontier test functions (such as DTLZ2), it still 

maintains excellent performance, verifying its adaptability in complex multi-objective optimization 

scenarios. To visually display the performance differences of the algorithms, Figure 2 presents a 

Pareto front comparison chart of the four algorithms on the ZDT1 function. 

 

Figure 2: Pareto Front Comparison on ZDT1 Function 

Figure 2 clearly shows that the Pareto front generated by the IPSO algorithm is closer to the 

theoretical front, and the distribution of the solutions is more uniform and the coverage range is 

more complete. This further verifies the effectiveness of the improved strategy.  

The IPSO algorithm was applied to the empirical regional multi-objective planting scheme 

optimization model. The particle swarm size was set at 100, and the maximum number of iterations 

was 200. The weights of the four objective functions were determined through the analytic 

hierarchy process: maximizing total output (0.3), maximizing economic benefits (0.3), minimizing 

water resource consumption (0.25), and minimizing fertilizer pollution (0.15). After the iterations, a 

Pareto optimal solution set was generated, including 28 effective optimal solutions. Considering the 

actual needs of the empirical region, which "prioritize food security while balancing economic 

benefits and ecological protection", three typical optimal schemes (Scheme 1: food-oriented; 

Scheme 2: economic-oriented; Scheme 3: ecological-economic collaborative) were selected. The 

values of the decision variables and the objective function values are shown in Figure 3. 
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Figure 3: The values of the decision variables and the value of the objective function 

3.3 Discussion on the feasibility and effectiveness of the optimization plan 

The quantitative assessment of the resource utilization efficiency and ecological benefits of the 

three optimal schemes is presented in Table 3. As can be seen from Table 3, the optimal schemes 

outperform the current schemes in terms of water resource, land resource utilization efficiency and 

ecological benefits: Scheme 3 has a 28.5% increase in water resource utilization efficiency (32.16 

kg/m³) compared to the current situation, a 15.3% increase in land output rate (7106.7 kg/hm²) 

compared to the current situation, and a 22.3% increase in fertilizer utilization efficiency (68.5 

kg/kg) compared to the current situation; Scheme 2 has the largest increase in water resource 

utilization efficiency (35.2%), and Scheme 1 has the largest increase in land output rate (34.1%). 

Table 3: Resource utilization efficiency 

Scheme Type 

Water Resource 

Utilization Rate 

(kg/m³) 

Land 

Productivity 

(kg/hm²) 

Fertilizer Use 

Efficiency 

(kg/kg) 

Fertilizer Pollution 

Load Reduction 

Rate (%) 

Scheme 1 

(Grain-oriented) 
33.05 8220.8 77.5 4.9 

Scheme 2 

(Economy-

oriented) 

29.35 6035.8 75.1 28.6 

Scheme 3 (Eco-

economic 

Synergistic) 

32.16 7106.7 68.5 20.0 

Current Scheme 25.04 6173.3 56.0 0 

From the perspective of ecological benefits, the reduction rate of fertilizer pollution load in 

Scheme 2 is the highest (28.6%), followed by Scheme 3 (20.0%). This is attributed to the precise 
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regulation of fertilizer application and the optimization of crop planting structure in the optimal 

scheme. Figure 4 shows the line graph of the improvement in resource utilization efficiency for 

each scheme, clearly demonstrating the trend of improvement in water and land resource utilization 

efficiency of the optimal scheme. Considering the current situation of water resource shortage in the 

empirical area, the water resource utilization efficiency of Scheme 3 has increased by 28.5%, which 

can effectively alleviate the regional water resource pressure, while the fertilizer pollution load has 

decreased by 20.0%, helping to improve the regional ecological environment quality and achieving 

sustainable agricultural development. 

 

Figure 4: The line graph showing the improvement in resource utilization efficiency for each plan 

4. Conclusion 

This study addresses the issues of low resource utilization efficiency and poor multi-objective 

synergy in traditional planting scheme optimization. It successfully developed an improved particle 

swarm optimization algorithm (IPSO) that integrates adaptive inertia weight, chaotic perturbation 

mechanism, and Pareto elite retention strategy. This algorithm demonstrates significant advantages 

in convergence, uniformity of solution distribution, and convergence speed compared to standard 

PSO and MOPSO algorithms. The convergence speed is improved by 32.6% and 21.8% 

respectively. In standard test functions such as ZDT1, the GD index is reduced by 67.4% compared 

to standard PSO and 37.8% compared to NSGA-III. Based on this algorithm, a multi-objective 

planting scheme optimization model was constructed, effectively achieving the collaborative 

optimization of yield, economic benefits, water resource consumption, and fertilizer pollution. 
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Empirical results show that the optimal planting scheme can increase the total crop yield by 15.3%, 

improve water resource utilization by 28.5%, increase economic benefits by 19.7%, and reduce 

fertilizer pollution load by 20.0% (ecological-economic collaborative scheme). This provides 

scientific and effective technical support for intelligent agricultural decision-making. At the same 

time, the study also has limitations such as the need to improve the algorithm's adaptability to 

dynamic complex scenarios and the model's failure to fully cover dynamic factors such as climate 

change. In the future, the model can be further optimized by integrating deep learning technology 

and incorporating dynamic variables to expand its application scenarios in real-time regulation of 

smart agriculture. 
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