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Abstract: To address the issues of low resource utilization efficiency and poor multi-
objective coordination in traditional planting scheme optimization, by integrating the
particle swarm algorithm with machine learning technology, an improved particle swarm
algorithm that incorporates adaptive inertia weight, chaotic disturbance mechanism, and
Pareto elite retention strategy is proposed. A multi-objective planting scheme optimization
model is constructed. Taking a typical agricultural area as the empirical object, multi-
dimensional data such as soil, climate, and market are collected. The decision variables
such as crop types, planting area, and irrigation strategy are optimized through the
improved algorithm. The experimental results show that the convergence speed of the
improved algorithm is 32.6% and 21.8% higher than that of the standard PSO and MOPSO
algorithms respectively. The optimal planting scheme generated can increase the total crop
yield of the region by 15.3%, improve the water resource utilization rate by 28.5%, and
increase the economic benefits by 19.7%. This research verifies the effectiveness and
superiority of the improved particle swarm algorithm in multi-objective planting
optimization, providing a scientific basis and technical support for agricultural
modernization planting decisions.

1. Introduction

During the process of agricultural modernization transformation, the optimization of planting
systems faces the concurrent demands for resource intensive utilization, capacity enhancement, and
ecological sustainable development[1]. Traditional planting schemes mostly rely on empirical
decision-making, which have problems such as poor multi-objective coordination and low resource
allocation efficiency, and are difficult to adapt to the complex and variable agricultural production
scenarios. The multi-objective optimization theory provides an effective paradigm to solve this
predicament. The particle swarm algorithm, due to its simple structure and high optimization
efficiency, has shown significant application potential in agricultural optimization decision-
making[2]. Combined with machine learning technology, it can further enhance the data-driven
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capability and prediction accuracy of the optimization model. Therefore, conducting research on
multi-objective planting scheme optimization based on the improved particle swarm algorithm is of
significant theoretical and practical significance for promoting the transformation of agricultural
production from empirical decision-making to intelligent decision-making, and improving the
efficiency and comprehensive benefits of agricultural resource utilization[3].

By reviewing the existing research results, it can be seen that multi-objective planting scheme
optimization has gradually evolved from traditional linear programming methods to intelligent
algorithms [4]. Particle swarm algorithms and genetic algorithms have been widely applied in the
optimization research of crop layout, water and fertilizer regulation, etc. At the same time, scholars
have proposed improvement directions such as parameter adaptive adjustment and mixed search
strategies to address the shortcomings of premature convergence and insufficient solution
distribution uniformity of the particle swarm algorithm [5]. The integration of machine learning and
optimization algorithms has become an important research paradigm in agricultural data-driven
optimization. However, existing research still has obvious gaps [6]. For example, the improvements
of the particle swarm algorithm mainly focus on a single defect, have insufficient adaptability to
multi-objective collaborative optimization scenarios, have a low coupling degree between the
optimization model and the actual planting scenario, and the targetedness and practicality of
empirical research need to be strengthened [7]. These problems provide a clear entry point for this
study.

2. Methods
2.1 Basic Theory and Supporting Technologies

The Particle Swarm Optimization (PSO) algorithm is inspired by the foraging behavior of bird
flocks. It achieves optimization through the collaboration and information sharing among particles
in the group. In the standard PSO, each particle represents a potential solution to the optimization
problem[8]. It updates its own velocity and position by tracking the individual best solution (pbest)
and the global best solution (gbest). The mathematical models are as shown in Equations (1) and (2):

vist = wviy + oy (pbestfy — x{ ) + cora(gbesth — xf ) (1)
In Equation (1), v represents the velocity of the i-th particle in the d-dimensional space during
the (t + 1)th iteration; ® is the inertia weight, which is used to balance the global exploration and
local exploitation capabilities; ¢ and c are learning factors, respectively representing the learning
ability of the particle for the individual optimal solution and the global optimal solution; r and r are
random numbers within the range of [0, 1]; x is the position of the i-th particle in the d-dimensional
space during the tth iteration[9]; pbest is the individual optimal position of the i-th particle in the d-
dimensional space; gbest is the global optimal position of the entire particle swarm in the d-
dimensional space.

Xigh =Xjg+Vig @)

Equation (2) represents the particle position update formula. x represents the position of the i-th

particle in the d-dimensional space during the (t + 1)th iteration. The standard PSO has inherent

drawbacks in multi-objective optimization scenarios, mainly manifested as: premature convergence,

prone to getting stuck in local optimal solutions; insufficient uniformity in the distribution of multi-

objective solutions within the set, making it difficult to cover the complete Pareto frontier; and the
optimization efficiency declines in the later iterations, resulting in a slower convergence speed.
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2.2 Improvement of the Design and Verification of Particle Swarm Algorithm

The standard PSO has three core drawbacks in multi-objective optimization: 1 premature
convergence, where the fixed inertia weight leads to insufficient global exploration in the early
stage or insufficient local development ability in the later stage, easily resulting in local optimum;
@ insufficient uniformity of solution distribution, during the particle update process, particles tend
to converge towards the local optimum, making it difficult to cover the complete Pareto frontier;
slow convergence speed in the later iterations, where the decay of particle velocity leads to a
decrease in optimization efficiency. To address these drawbacks, this study makes improvements in
three dimensions: inertia weight, learning factor, and search strategy, and constructs an improved
PSO algorithm (Improved PSO, IPSO) suitable for multi-objective planting scheme
optimization[10].

The core improvement strategy employs a coupling iterative process and the dynamic inertia
weight of particle fitness to balance the global exploration and local exploitation capabilities at
different iterative stages, as shown in Equation (3):

__ (@Wmax—®Wmin)'t

fiti(t)—fitmin(t
fitmai(gt)_fitmi(n()t)) (3)

In Equation (3), o(t) represents the inertia weight for the t-th iteration; ® and ® are the maximum
and minimum values of the inertia weight (in this study, they are set to 1.2 and 0.4 respectively); T
is the maximum number of iterations; fit(t) is the fitness value of the i-th particle in the t-th iteration;
fit(t) and fit(t) are the maximum and minimum fitness values in the t-th iteration. This mechanism
introduces the difference in particle fitness through an exponential function, allowing particles with
poorer fitness to maintain a larger inertia weight to enhance global exploration, and particles with
better fitness to reduce the inertia weight to strengthen local exploitation.

The factor-based collaborative learning adopts a dynamic learning factor strategy, causing ¢ to
decrease with the iterative process and c to increase with the iterative process, achieving the
transition from "individual learning as the main approach” to "group learning as the main approach”,
as shown in Equations (4) and (5):
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In Equations (4) and (5), c(t) and c(t) represent the learning factors for the t-th iteration; c and c
are the maximum and minimum values of ¢ (in this study, 2.5 and 1.0 are taken); ¢ and c are the
maximum and minimum values of c (in this study, 2.5 and 1.0 are taken).

To break through the local optimal trap, Logistic chaotic perturbation is introduced to the particle
positions in the later stages of the iteration, as shown in Equations (6) and (7):

Via(t) = 4yia(t — D1 = yq(t —1)] (6)
xl't,;i'-1 = xit,d ta- Yid (t) ’ (xmax,d - xmin,d) (7)

Equation (6) represents the Logistic chaotic mapping formula, where y(t) is the chaotic variable
of the i-th particle in the d-dimensional space at the t-th iteration. The initial value y(0) belongs to
the range (0, 1) and is not 0.25, 0.5, or 0.75. Equation (7) is the position update formula after
introducing chaotic perturbation, where a is the perturbation intensity (in this study, it is set to 0.05),
and x and x represent the maximum and minimum values of the d-th decision variable, respectively.

Build an elite solution set to store the Pareto optimal solutions. After each iteration, new Pareto
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optimal solutions are selected through non-dominated sorting and added to the elite solution set. If
the size of the elite solution set exceeds the preset threshold, redundant solutions are eliminated
using the crowding degree calculation to maintain the diversity and uniformity of the solution set.
The crowding degree calculation is shown in Equation (8):
T ®)
fie =Tk

In Equation (8), CD represents the congestion degree of the i-th solution; f(i+1) and f(i-1) are the
objective values of the (i+1)-th and (i-1)-th solutions under the k-th objective function; f and f
represent the maximum and minimum values of the k-th objective function, respectively.

Based on the above improvement strategies, the speed and position update formulas of IPSO are
ultimately determined as Equations (9) and (10):

vigt = w(t)viy + ci(Ory(pbest!y — x{4) + c; (), (gbesty — x} ;) 9)
i = { xfg +vidt, t < 0.8Tax 10)
L
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The implementation process of IPSO is shown in Figure 1.
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Figure 1: The implementation process of IPSO
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2.3 Construction of a multi-objective planting scheme optimization model

Decision variables: Suppose there are n types of crops planted in the study area. The decision
variable vector is defined as x = [A, A,..., A, D, D,..., D, W, W,..., W], where A represents the
planting area of the i-th crop (hm=, D represents the planting density of the i-th crop (plants/hm=,
and W represents the irrigation volume of the i-th crop (m$hm=.

Objective function: Based on the actual situation of planting production, four conflicting
objective functions are constructed to achieve multi-dimensional collaborative optimization:

(1) Maximization of total output: f(x) = X A - Y(D,W), where Y(D,W) is the unit area yield of
the i-th crop (kg/hm=}, predicted by the random forest regression model, as shown in Equation (11):

Y;(D;,W;) = RF(D;, W, S;, C;, T;) (11)

In Equation (11), RF represents the random forest regression model, S represents the soil fertility
grade, C represents the fertilizer application amount (kg/hm=, and T represents the average
temperature (°C).

(2) Maximization of economic benefits: f(x)=XA-[Y-P-(C P+W P+L)], where P represents the
market price of the i-th crop (in yuan/kg), P is the fertilizer price (in yuan/kg), P is the water fee (in
yuan/m3, and L is the unit area labor cost of the i-th crop (in yuan/hm=:.

(3) Minimization of water resource consumption: f(x) = ZA-W.

(4) Minimization of fertilizer pollution (ecological benefit): f(x)=XA-C-g, where ¢ represents the
fertilizer loss coefficient for the i-th type of crop.

Constraints:

(Li=14i < Aot

[/Vi = VVL’,min' VVL < Wi,max

D; = Dj min» Di < Djmax (12)
LAL- >0, =0

Qwater = ?=1Ai - W;

In the formula, A represents the total planting area of the study region (hm=, W and W represent
the minimum and maximum irrigation amounts of the i-th type of crop respectively, D and D
represent the minimum and maximum planting densities of the i-th type of crop respectively, and Q
represents the total available water resources in the study region (m3.

3. Results and Discussion
3.1 Empirical Area Overview and Data Foundation

A certain agricultural main production area in the North China Plain (geographical coordinates:
36°20" - 36°50" N, 115°40" - 116°10" E) was selected as the empirical area. This area has a
temperate monsoon climate, with an average annual temperature of 13.5°C, an annual precipitation
of 550 - 650mm, with most of the precipitation concentrated in summer, and a frost-free period of
205 days. It meets the growth requirements of various crops such as wheat, corn, and cotton. The
total planting area of this region is 1200 hm=The soil type is mainly loam, with soil organic matter
content ranging from 1.2% to 1.8%, and soil pH value ranging from 6.8 to 7.5. The water resources
are mainly surface water and shallow groundwater, and the total available water resources are
approximately 1.8x107m?. Currently, the planting structure of this area is mainly wheat-corn
rotation, with a small amount of cotton intercropped. There are problems such as low water
resource utilization efficiency (irrigation water utilization coefficient is only 0.52) and unbalanced
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economic benefits (unit area net profit difference reaches 3000 yuan/hm=%. There is a practical
demand and research value for optimizing the planting scheme.

The data collection scope covers multi-dimensional time-series data of the empirical area from
2014 to 2023. It is obtained by integrating field research and official statistics. The core data types
and processing methods are as follows: We collected four categories of data to build a
comprehensive agronomic dataset.(D Soil data: We sampled 120 plots using the five-point method
and measured physical-chemical indicators such as soil organic matter, total nitrogen, available
phosphorus, and rapidly available potassium. After laboratory analysis, we imputed missing values
with the K-nearest-neighbour algorithm and removed outliers by means of the box-plot rule
(interquartile-range multiplier = 1.5). Meteorological data: We downloaded 10-year monthly
time-series (120 records) for annual precipitation, mean temperature, accumulated temperature, and
sunshine hours from the regional meteorological service. The few missing months were filled by
linear interpolation.(® Crop data: We gathered planting area, density, irrigation volume, fertiliser
rate, and yield per unit area for wheat, maize, and cotton over 10 years in three townships, giving 90
samples (3 crops x10 years x3 townships).@ Market and economic data: We obtained crop market
prices, fertiliser unit prices, water charges, and labour costs for the same period from the local
Bureau of Agriculture and Rural Affairs and the Bureau of Statistics. There are 120 records for 10
years %12 economic indicators. After data preprocessing, the mutual information method is used to
screen the key features affecting crop yield. The results show that planting density, irrigation
volume, soil organic matter content, average temperature, and fertilizer application volume are the
core influencing factors (mutual information values are all > 0.6), and they are used as input
features for the subsequent random forest regression model. All input data is normalized using Z-
Score to ensure the uniformity of data dimensions. Table 1 shows the overview of the core data
after preprocessing.

Table 1: Overview of the preprocessed core data

Data Type Specific Indicator Sample Size Value Range

Soil Data Soil Organic Matter Content (%) 120 1.2-1.8

Climate Data Annual Precipitation (mm) 120 550-650

Crop Data \Wheat Planting Density (plants/hm= 90 225x10=300%10=3
Economic Data  |Wheat Market Price (CNY/kg) 120 2.5-3.2

3.2 Optimization results of multi-objective planting schemes

Based on the five standard multi-objective test functions ZDT1, ZDT2, ZDT3, DTLZ1, and
DTLZ2, the performance of four algorithms, namely IPSO, standard PSO, MOPSO, and NSGA-III,
was tested. Each algorithm was run independently for 30 times, and the mean =standard deviation
of the three core indicators GD, IGD, and S were used as the evaluation basis. The results are
shown in Table 2.

Table 2: Improvement in Algorithm Performance Comparison Results

Test Function | CVAY1ON | srandard PSO | MOPSO NSGA-III IPSO (This
Metric Study)

ZDT1 GD 0.08640.012 | 0.05240.008 | 0.04540.006 | 0.0280.004
(Convex IGD 0.10240.015 | 0.06840.009 | 0.05620.007 | 0.03520.005
Front) S 0.6840.05 0.7920.04 0.8520.03 0.9240.02
DTLZ2 GD 0.10540.018 | 0.06940.011 | 0.05840.009 | 0.03620.006
(Non-convex | IGD 0.12840.021 | 0.085#0.013 | 0.07240.010 | 0.04229.007
Front) S 0.6240.06 0.7520.05 0.8220.04 0.90%0.03
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As shown in Table 2, among all the test functions, the GD and IGD indicators of the IPSO
algorithm are significantly lower than those of the other three algorithms, while the S indicator is
significantly higher than the others. Taking the ZDT1 function as an example, the GD indicator of
IPSO is 67.4% lower than that of the standard PSO, 46.2% lower than that of MOPSO, and 37.8%
lower than that of NSGA-III; the IGD indicator is 65.7% lower than that of the standard PSO, 48.5%
lower than that of MOPSO, and 37.5% lower than that of NSGA-I11I; the S indicator is 35.3% higher
than that of the standard PSO, 16.5% higher than that of MOPSO, and 8.2% higher than that of
NSGA-III. This indicates that the IPSO algorithm effectively improves convergence and the
uniformity of solution distribution through adaptive inertia weight and chaotic perturbation
improvement strategies. Especially in non-convex frontier test functions (such as DTLZ2), it still
maintains excellent performance, verifying its adaptability in complex multi-objective optimization
scenarios. To visually display the performance differences of the algorithms, Figure 2 presents a
Pareto front comparison chart of the four algorithms on the ZDT1 function.

e Theoretical Pareto Front

T 10

®  MOPSO
Standard PSO

Solution Quality lm:l‘e\

Objective 2 (Normalized)

v . T v T . 00
0.0 0.2 04 0.6 0.8 Lo

Objective 1 [“(Irlllil":ﬂ"ll)
Figure 2: Pareto Front Comparison on ZDT1 Function

Figure 2 clearly shows that the Pareto front generated by the IPSO algorithm is closer to the
theoretical front, and the distribution of the solutions is more uniform and the coverage range is
more complete. This further verifies the effectiveness of the improved strategy.

The IPSO algorithm was applied to the empirical regional multi-objective planting scheme
optimization model. The particle swarm size was set at 100, and the maximum number of iterations
was 200. The weights of the four objective functions were determined through the analytic
hierarchy process: maximizing total output (0.3), maximizing economic benefits (0.3), minimizing
water resource consumption (0.25), and minimizing fertilizer pollution (0.15). After the iterations, a
Pareto optimal solution set was generated, including 28 effective optimal solutions. Considering the
actual needs of the empirical region, which "prioritize food security while balancing economic
benefits and ecological protection”, three typical optimal schemes (Scheme 1: food-oriented,;
Scheme 2: economic-oriented; Scheme 3: ecological-economic collaborative) were selected. The
values of the decision variables and the objective function values are shown in Figure 3.
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Cost-Benefit Analysis of Different Planting Schemes
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Figure 3: The values of the decision variables and the value of the objective function

3.3 Discussion on the feasibility and effectiveness of the optimization plan

The quantitative assessment of the resource utilization efficiency and ecological benefits of the
three optimal schemes is presented in Table 3. As can be seen from Table 3, the optimal schemes
outperform the current schemes in terms of water resource, land resource utilization efficiency and
ecological benefits: Scheme 3 has a 28.5% increase in water resource utilization efficiency (32.16
kg/m3F compared to the current situation, a 15.3% increase in land output rate (7106.7 kg/hm=¢
compared to the current situation, and a 22.3% increase in fertilizer utilization efficiency (68.5
kg/kg) compared to the current situation; Scheme 2 has the largest increase in water resource

utilization efficiency (35.2%), and Scheme 1 has the largest increase in land output rate (34.1%).

Table 3: Resource utilization efficiency

Water Resource | Land Fertilizer Use | Fertilizer Pollution
Scheme Type Utilization Rate | Productivity Efficiency Load Reduction
(kg/m3F (kg/hm=¢ (ka/kg) Rate (%)
Scheme 1
(Grain-oriented) 33.05 8220.8 77.5 4.9
Scheme 2
(Economy- 29.35 6035.8 75.1 28.6
oriented)
Scheme 3 (Eco-
economic 32.16 7106.7 68.5 20.0
Synergistic)
Current Scheme | 25.04 6173.3 56.0 0

From the perspective of ecological benefits, the reduction rate of fertilizer pollution load in
Scheme 2 is the highest (28.6%), followed by Scheme 3 (20.0%). This is attributed to the precise
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regulation of fertilizer application and the optimization of crop planting structure in the optimal
scheme. Figure 4 shows the line graph of the improvement in resource utilization efficiency for
each scheme, clearly demonstrating the trend of improvement in water and land resource utilization
efficiency of the optimal scheme. Considering the current situation of water resource shortage in the
empirical area, the water resource utilization efficiency of Scheme 3 has increased by 28.5%, which
can effectively alleviate the regional water resource pressure, while the fertilizer pollution load has
decreased by 20.0%, helping to improve the regional ecological environment quality and achieving
sustainable agricultural development.
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Figure 4: The line graph showing the improvement in resource utilization efficiency for each plan
4. Conclusion

This study addresses the issues of low resource utilization efficiency and poor multi-objective
synergy in traditional planting scheme optimization. It successfully developed an improved particle
swarm optimization algorithm (IPSO) that integrates adaptive inertia weight, chaotic perturbation
mechanism, and Pareto elite retention strategy. This algorithm demonstrates significant advantages
in convergence, uniformity of solution distribution, and convergence speed compared to standard
PSO and MOPSO algorithms. The convergence speed is improved by 32.6% and 21.8%
respectively. In standard test functions such as ZDT1, the GD index is reduced by 67.4% compared
to standard PSO and 37.8% compared to NSGA-III. Based on this algorithm, a multi-objective
planting scheme optimization model was constructed, effectively achieving the collaborative
optimization of yield, economic benefits, water resource consumption, and fertilizer pollution.
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Empirical results show that the optimal planting scheme can increase the total crop yield by 15.3%,
improve water resource utilization by 28.5%, increase economic benefits by 19.7%, and reduce
fertilizer pollution load by 20.0% (ecological-economic collaborative scheme). This provides
scientific and effective technical support for intelligent agricultural decision-making. At the same
time, the study also has limitations such as the need to improve the algorithm's adaptability to
dynamic complex scenarios and the model's failure to fully cover dynamic factors such as climate
change. In the future, the model can be further optimized by integrating deep learning technology
and incorporating dynamic variables to expand its application scenarios in real-time regulation of
smart agriculture.
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