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Abstract: This study explores the impact of investor sentiment on futures pricing efficiency
and employs dual machine learning (DML) and generalized random forest (GRF) methods
for causal inference analysis. By constructing an investor sentiment index and combining it
with pricing efficiency indicators for the futures market, empirical results demonstrate that
sentiment has a significant positive impact on futures pricing efficiency, particularly in
contexts of high market volatility, where the impact of sentiment fluctuations on pricing bias
is more pronounced. Furthermore, the study reveals the heterogeneity of sentiment effects
across different market phases, with the impact of sentiment on pricing efficiency being more
pronounced in bull markets and relatively weaker in bear and volatile markets. This study
provides new empirical evidence for understanding the relationship between investor
sentiment and futures market pricing efficiency and offers theoretical support for future
market regulation and policymaking.

1. Introduction

As a crucial component of the capital market, the pricing efficiency of the futures market is directly
related to the effectiveness of price discovery, risk management, and resource allocation. Under the
assumptions of complete information and rational expectations, futures prices should fully reflect the
expected performance of the underlying assets, achieving "unbiased and efficient pricing.” However,
in real markets, investor behavior is often influenced by irrational factors. Especially during periods
of volatile markets or extreme sentiment, futures prices are prone to experiencing "pricing distortion,"
where they deviate from spot prices [1]. In recent years, with the acceleration of information
dissemination and the prevalence of leveraged trading, the impact of investor sentiment on futures
market price behavior has become increasingly significant. Uncovering the underlying mechanisms
linking investor sentiment to pricing efficiency has become a key research topic at the intersection of
financial engineering and behavioral finance [2].

Existing research has shown that investor sentiment, as a concentrated manifestation of market
irrationality, can significantly influence the pricing bias and volatility of financial assets such as
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stocks, bonds, and options [3]. Most relevant literature uses metrics such as basis, price deviation,
and volatility residual to measure pricing efficiency. Sentiment indices are constructed using methods
such as principal component analysis (PCA) and empirically tested using multiple linear regression
or fixed-effects models. These studies have achieved some success in identifying the relevance of
sentiment to pricing bias, but two key limitations remain: First, traditional regression methods
struggle to effectively capture the complex interactions between high-dimensional sentiment features
and market variables [4]. Second, linear models overlook the nonlinear, heterogeneous, and time-
varying nature of sentiment influences, making it difficult to capture "local treatment effects” and
individual differences in causal inference [5].

To address these issues, this paper introduces a double machine learning (DML) and generalized
random forest (GRF) approach within the Neyman-Rubin causal inference framework to
systematically evaluate the causal effect of investor sentiment on futures pricing efficiency [6]. The
double machine learning approach effectively identifies the average treatment effect (ATE) of
sentiment variables through cross-fitting and high-dimensional variable modelling [7]. The GRF
further captures the conditional average treatment effect (CATE), revealing the heterogeneous
responses of sentiment shocks to pricing efficiency under different market conditions and investor
behavioral characteristics [8]. Compared to traditional linear models, this combined approach offers
greater flexibility, robustness, and explanatory power, providing a new approach for modeling and
regulating irrational behavior in futures markets.

This paper's main contributions lie in the following three areas: First, it constructs an investor
sentiment index that integrates high-frequency trading behavior indicators and online sentiment data,
improving the accuracy and immediacy of sentiment measurement; Second, it introduces the DML
and GRF causal machine learning methods into the study of futures market pricing efficiency for the
first time, systematically identifying average and heterogeneous causal effects; Third, through
empirical testing, it reveals the dynamic impact of sentiment shocks on pricing efficiency during bull-
bear transitions, major event shocks, and periods of extreme volatility. The paper is organized as
follows: Section 2 reviews relevant literature; Section 3 introduces variable construction and data
sources; Section 4 explains the causal modeling method and implementation steps; Section 5 presents
empirical results and robustness analysis; and Section 6 concludes the paper and offers policy
recommendations.

2. Related Work

In rational expectations financial models, futures prices should reflect the market's average
expectation of future spot prices, with fluctuations driven by fundamental information [9]. However,
actual market operations are far from completely rational. Investor sentiment, a collective
psychological phenomenon, often amplifies irrational market price fluctuations in environments of
information asymmetry, high volatility, or unexpected events. Particularly in futures markets, where
leverage is frequently used and expectations dominate trading decisions, emotional fluctuations are
easily amplified through rapid trading reactions and herd behavior, thereby biasing futures prices
[10].

In this context, futures pricing efficiency is influenced not only by fundamental drivers but also
by behavioral factors [11]. When sentiment is excessive, the market may overestimate future prices,
driving up futures prices; when sentiment is low, panic-fueled expectations may emerge, depressing
prices. These price fluctuations that deviate from fundamental values directly reflect declining futures
pricing efficiency. Therefore, systematically identifying the pathways through which sentiment
influences futures pricing efficiency helps understand the underlying mechanisms of market failure
[12].
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Methods for measuring futures pricing efficiency are constantly evolving, with the most
commonly used methods including basis measures, relative error, and price residual volatility. These
indicators vary in form, but essentially all operate on the core logic of "whether futures prices
reasonably reflect spot expectations.” However, due to the inherent volatility of futures prices and
their susceptibility to short-term liquidity and speculative trading, a single indicator often fails to fully
capture the state of market efficiency [13].

In terms of modeling, traditional statistical regression models typically assume a linear relationship
between variables. This assumption often appears overly simplistic given the complex interactions
between sentiment shocks and market behavior [14]. Furthermore, changes in pricing efficiency can
exhibit significant heterogeneity. For example, the sensitivity of futures prices to sentiment can vary
significantly across different market states (bull/bear), trading phases (opening/closing), and
sentiment levels (extreme panic/extreme optimism). Traditional models clearly fall short in fully
capturing these underlying nonlinear structures and local patterns [15].

Constructing an indicator system that can represent market sentiment is fundamental to studying
the impact of sentiment. Essentially, investor sentiment can be viewed as a comprehensive reflection
of multiple factors, including trading behavior, expectations, and market confidence. Therefore, the
construction of a sentiment index should encompass as many dimensions as possible, such as market
liquidity indicators, capital flow behavior, price fluctuations, account activity frequency, and even
new variables such as market sentiment and online activity.

Sentiment indices can be obtained through a weighted average of standardized indicators or by
extracting principal component features from multiple proxy variables using dimensionality reduction
techniques. Furthermore, text-based sentiment recognition methods can be introduced, such as using
natural language processing to extract investor sentiment trends from social platforms and financial
media, thereby constructing a fused, multi-scale emotional expression structure. This approach not
only enables dynamic tracking of investor psychology but also provides a stronger signal foundation
for subsequent causal identification.

In summary, current research on futures pricing efficiency still has significant shortcomings in
terms of methodology and variable systems. On the one hand, traditional regression methods struggle
to capture complex causal relationships and heterogeneous responses, making them unable to
effectively identify the true impact of sentiment variables. On the other hand, existing sentiment
measurement methods often fail to fully integrate structural market characteristics with high-
frequency, unstructured data, resulting in insufficient information utilization in sentiment indices.
This research addresses these two points: first, by integrating structured behavioral data with
unstructured textual signals, we construct a more accurate and dynamic sentiment index system.
Second, we introduce nonparametric causal inference methods, including dual machine learning and
generalized random forests, to identify the causal pathways and heterogeneous impacts of sentiment
variables on futures pricing efficiency. This combination will help transcend the limitations of linear
modeling and provide a more fundamental understanding of the embedded structure of behavioral
factors in price mechanisms.

3. Variable Construction and Data Description
3.1 Data Source and Sample Range

The data used in this study covers core indicators of China's stock index futures market and its
corresponding spot market. The primary sources include the China Financial Futures Exchange
(CFFEX), Wind Financial Terminal, and selected online public platforms (such as Eastmoney, Baidu
Index, and Snowball). The CSI1 300 Index Futures (IF) is used as a representative futures product due
to its high liquidity and representativeness, making it a suitable sample for market pricing efficiency
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research.

The research sample period is from January 1, 2016, to December 31, 2023, with daily data. This
period encompasses multiple sentiment and market volatility events, such as stock market circuit
breakers, the impact of the COVID-19 pandemic, and policy transitions, helping to capture the
dynamics of sentiment-driven effects under varying market conditions.

3.2 Construction of Pricing Efficiency Index

Futures pricing efficiency reflects the degree to which futures prices respond to spot price
expectations. A well-constructed efficiency metric should capture both the rationality and deviation
amplitude of pricing. This study selects the following three core indicators to measure pricing
efficiency, as shown in Table 1:

Table 1: Core Indicator Table

Metric Name | Mathematical Definition Economic Interpretation
Absolute Basis AbsBasis; = |F; - S| Measures the absolute deviation between futures
and spot prices
Relative Bias RelBias; = (Fi - S¢) / S Indicates the percentage deviation relative to spot
prices
Bias Volatility | VarBias, = Var(F, - S,) Reflects the overall instability of pricing deviation

Here, F, represents the closing price of the futures contract on day t, and S, represents the closing
price of the corresponding spot index (CSI 300). The above indicators respectively capture static
deviation and cross-period dynamic deviation, providing multidimensional variable support for
subsequent causal inference analysis.

3.3 Methodology for Constructing the Investor Sentiment Index

Investor sentiment is a latent variable that cannot be directly observed and must be indirectly
extracted through a series of proxy indicators. This paper comprehensively considers the intensity of
external emotions and the characteristics of trading behavior and constructs the following five types
of sentiment indicators, as shown in Table 2:

Table 2: Agent Indicator Table

No. Indicator Name Construction Method Indicator Interpretation
1 Turnover Total tradlngv\é:)ulgme / Market Represents market activity level
9 ADR (Advance- Number of rising stocks / Indicates bullish or panic
Decline Ratio) Number of falling stocks sentiment in the market

Margin Balance Represents the level of retail

3 . Margin balance / Market value .
Ratio leverage sentiment
4 Volatility Index Rolling standard deviation of Reflects market uncertainty
(HV) returns
Standardized web search heat Indicates the attention and
5 Buzz Index ; . .
index popularity of market topics

After standardizing the above indicators, the principal component analysis (PCA) method is
applied to extract the principal factors and construct a comprehensive investor sentiment index
Sentiment;, defined as:

Sentiment, = 4,z + 4,7} +---+ A, Z} 1)
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z}. represents the standardized value of the k-th sentiment proxy variable, and A, is the loading
coefficient of the first principal component extracted via PCA. A higher value of the index indicates
stronger market sentiment, while a lower value implies weaker sentiment.

3.4 Control variable system setting

To eliminate other market structural factors that may interfere with the relationship between
sentiment and pricing efficiency, this paper introduces the following control variable system, as
shown in Table 3:

Table 3: Control Variables Table

Control Variable Name Symbol Description
Risk-free Interest Rate I Approximated by Shibor overnight rate
Remaining Time to Maturity | Maturity, Remaining trading days of the contract
Historical Volatility Vol Standard deviation of log returns over the past 20 days
Market Return Return, Return of CSI 300 Index on the previous trading day
Change Rate of Trading AQ Growth ratio of trading volume compared with the
Volume ! previous day

This control variable system covers multiple dimensions such as macro-capital costs, futures
contract structure, short-term volatility and market trends, providing a sufficient basis for adjusting
confounding variables for causal modeling.

To facilitate the understanding of the modeling structure, this article draws the following variable
system dependency structure, as shown in Figure 1:

Explanatiory Variable Result Variables Control Variables
(Independent) "~ (Dependent)-——-_J_____ > (Covaties)
P 4
Investor Sentiment / Absolute Basis = [F, — 5] {417 Risk-Free Rate rrtr
(Sentment) - — Pricing Efficiency » Maturity (Maturity)
- ‘ =4 Historical Voladlity $Vol,
Market Trading Behavior Absolute deviation between = Market Return (Return
(Turnover, Volume A) f 4 ; M :
* Social Media Sentiment M dic e e IEndiiE veluine
(Online Attention, llielative Bias [= ? = if ‘ Trading Change Rate
News Sentiment Relative deviation from spot i')rrice

= Construction: Standiizationd + PCA

Figure 1: Variable system architecture diagram
4. Causal Modeling Methods and Implementation
4.1 Causal Inference Framework

This study aims to identify the causal effect of investor sentiment on futures pricing efficiency.
Traditional methods often fail to identify the causal relationships between unobserved sentiment
variables and market variables. To address these challenges, this paper employs DML and GRF
methods, which can detect the interactions between high-dimensional variables and infer the causal
effect of sentiment on futures pricing efficiency.

The core of causal inference is based on the Neyman-Rubin potential outcomes framework, which
defines the ‘treatment effect’ and ‘control effect’ to identify causal relationships. In this paper,
investor sentiment is treated as the ‘treatment variable’ T;, and futures pricing efficiency (e.g., Basis,
Relative Bias) is treated as the “‘outcome variable’ Y;, where the causal effect is the difference between
the outcomes under different scenarios. By using this framework, this study aims to estimate the ATE
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of sentiment on pricing efficiency, defined as:
ATE = E[Yt(1) - Yt(0)] (2

Where, Y;(1) represents the futures pricing efficiency when sentiment changes, and Y;(0)
represents the futures pricing efficiency when no sentiment change occurs. To further explore the
quality of the effect of investor sentiment on futures pricing efficiency, this study introduces the
CATE, which helps us identify how investor sentiment affects futures pricing efficiency in different
market conditions. The formula for CATE is:

CATEt = E[Yt (1) _Yt (0)| xt] (3)

By estimating the CATE, we can better understand the heterogeneous impact of sentiment on
futures pricing efficiency in different market scenarios.

4.2 DML Method

To overcome the biases that may occur in high-dimensional data with traditional regression
methods, this study employs the Double Machine Learning (DML) method for causal inference. The
DML method uses a two-step regression modeling approach, where the relationships between control
variables and the treatment variable are first estimated, and then the predicted values are used to
estimate the causal effect of sentiment on futures pricing efficiency, effectively removing selection
bias from the variables.

The core idea of Double Machine Learning is to first use machine learning algorithms to estimate
the predicted values of all covariates (including sentiment and control variables), and then incorporate
these predicted values into the causal inference model to reduce the impact of variable selection on
the causal estimation.

The DML method involves the following two steps: Step One: Estimate the relationship between
the treatment variable (sentiment) and the control variables:

We use machine learning algorithms (such as Random Forest, XGBoost, etc.) to model the
sentiment variable T, and the pricing efficiency Y;, obtaining their predicted values T, and ¥;.

Step Two: Estimate the causal effect:A linear regression model is used to estimate the effect of
sentiment on pricing efficiency:

Y, -V, =a(T, -T)+¢ 4

This regression step helps to identify the true causal effect of sentiment changes on pricing
efficiency while controlling for the effects of other variables.

Through the DML method, we can perform robust causal inference with high-dimensional data,
avoiding overfitting or bias that might arise from traditional regression models.

4.3 GRF Method

To further capture the nonlinear impact of sentiment changes on futures pricing efficiency, this
study also employs the GRF method. GRF is an extension of the traditional random forest method,
specifically designed for causal inference. It estimates the CATE and is capable of handling complex
nonlinear relationships between variables.

Working Principle of GRF The core idea of GRF is to construct multiple decision trees, where
each tree estimates the causal effect for different subgroups of the data by splitting it based on features
and treatment variables. GRF uses the following steps to calculate CATE: Construct Multiple
Decision Trees: In each decision tree, GRF uses the feature variables X; and the treatment variable
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T, to split the data and estimate the causal effect at each leaf node. Local Weighted Regression:
Within each node, GRF estimates the CATE by performing local regression on the treated and control
groups:

(®)

Aggregate the Results from Multiple Trees: Finally, GRF aggregates the causal estimates from
multiple trees to provide a robust estimate of the CATE. This approach allows GRF to capture
heterogeneity in treatment effects across different samples.

The advantage of GRF lies in its ability to model high-dimensional data with complex, nonlinear
relationships, providing interpretable causal estimates and capturing heterogeneity in causal effects.

CATE, = E[Y,®) -Y,(0)l X,]

5. Empirical Results
5.1 Descriptive statistical analysis

In the application of the DML model, we first predict the sentiment variables and control variables
using machine learning algorithms (such as random forests). Then, we use these predicted values to
conduct regression analysis to estimate the causal effect of investor sentiment on futures pricing
efficiency. The results are shown in Table 4.

Table 4: DML model estimation results

Variable Name Coefficient | Standard Error | t-statistic | p-value
Investor Sentiment (Sentiment) 0.108 0.045 2.40 0.016
Risk-free Interest Rate -0.325 0.120 -2.71 0.007
Remaining Maturity 0.021 0.014 1.50 0.133
Market Return 0.215 0.045 4.78 0.000
Change in Trading Volume 0.075 0.035 2.14 0.034

In the DML model, Sentiment has a significant impact on pricing efficiency, with a coefficient of
0.108 and a p-value of 0.016, indicating that sentiment has a positive impact on futures pricing bias.
In other words, increased sentiment leads to greater pricing bias.

5.2 GRF Model Estimation Results
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Figure 2: Causal Forest - Conditional Average Treatment Effect
To further explore the heterogeneous impact of sentiment on pricing efficiency, we used GRF to
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estimate CATE. The GRF model is capable of estimating the heterogeneous impact of sentiment on
pricing bias under different market conditions. The results are shown in Figure 2.

The GRF model's estimation results show that in highly volatile markets (e.g., when market returns
are negative), increased sentiment significantly increases pricing bias. In contrast, in low-volatility
environments, sentiment has a relatively small impact on pricing efficiency. This suggests that the
impact of sentiment on pricing efficiency is not only nonlinear but also varies with market volatility.

5.3 Causal effect analysis

By combining the DML and GRF models, we can clearly identify the causal effect of investor
sentiment on futures pricing efficiency. The ATE of the DML model indicates that sentiment
fluctuations have a significant positive impact on pricing efficiency. The GRF model further reveals
the heterogeneous impact of sentiment on pricing efficiency, particularly during periods of high
market volatility, where the impact of sentiment on pricing efficiency is more pronounced. The results
are shown in Figure 3.
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Figure 3: Causal Effect of Investor Sentiment on Futures Pricing Efficiency

Through these analysis results, we can conclude that investor sentiment is an important driving
factor of pricing deviations in the futures market, especially when market uncertainty is high, the
impact of changes in sentiment on pricing efficiency is more prominent.

5.4 Robustness test

To validate the robustness of the model, we conducted several alternative tests, including the
following: Alternative sentiment variable construction: We replaced the sentiment proxy with a
natural language processing (NLP) sentiment analysis based on a sentiment lexicon rather than PCA.
Different pricing efficiency metrics: We replaced the basis (AbsBasis) with the volatility residual
(Volatility Residual) as a measure of pricing efficiency. Time-segment analysis: We divided the
sample data into three phases: bull market, bear market, and volatile market, and ran model
regressions on each phase to test the stability of the sentiment effect.

The results are shown in Table 5.

The robustness test results show that the impact of emotions on futures pricing efficiency remains
consistent under different emotion proxy methods and pricing efficiency indicators, and the emotion
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effect is most significant in the bull market, further verifying the causal impact of emotions on pricing
efficiency.

Table 5: Robustness test results

Test Method Coefficient | Standard Error | t-statistic | p-value
Substitute Sgntlment Varlgble (NLP 0.120 0.048 250 0.013
Sentiment Analysis)
Use of Volatility Residual (AbsBasis) 0.095 0.041 2.31 0.023
Bull Market Subsample Analysis 0.135 0.050 2.70 0.008
Bear Market Subsample Analysis 0.081 0.052 1.56 0.118

6. Conclusion and Outlook

This study introduced the DML and GRF methods to deeply explore the impact of investor
sentiment on futures pricing efficiency. The empirical results show that investor sentiment has a
significant positive impact on futures pricing efficiency, especially when market volatility is high,
the impact of sentiment fluctuations on pricing deviations is more significant. Robustness tests further
verified the stability of the impact of sentiment. Through this study, we found that sentiment not only
has a greater impact on pricing efficiency in bull markets, but its effect is relatively weaker in bear
markets or volatile markets. Therefore, policy recommendations include strengthening market
sentiment monitoring, optimizing risk management, and strengthening investor education to improve
market stability and efficiency. However, this study also has certain limitations. In the future, it is
possible to combine more high-frequency data for sentiment measurement, expand to other markets,
and use dynamic causal models to further verify the sentiment effect. Overall, this study provides
new theoretical basis and empirical support for the relationship between sentiment and pricing
efficiency in the futures market.
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