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Abstract: This study explores the impact of investor sentiment on futures pricing efficiency 
and employs dual machine learning (DML) and generalized random forest (GRF) methods 
for causal inference analysis. By constructing an investor sentiment index and combining it 
with pricing efficiency indicators for the futures market, empirical results demonstrate that 
sentiment has a significant positive impact on futures pricing efficiency, particularly in 
contexts of high market volatility, where the impact of sentiment fluctuations on pricing bias 
is more pronounced. Furthermore, the study reveals the heterogeneity of sentiment effects 
across different market phases, with the impact of sentiment on pricing efficiency being more 
pronounced in bull markets and relatively weaker in bear and volatile markets. This study 
provides new empirical evidence for understanding the relationship between investor 
sentiment and futures market pricing efficiency and offers theoretical support for future 
market regulation and policymaking.

1. Introduction 

As a crucial component of the capital market, the pricing efficiency of the futures market is directly 
related to the effectiveness of price discovery, risk management, and resource allocation. Under the 
assumptions of complete information and rational expectations, futures prices should fully reflect the 
expected performance of the underlying assets, achieving "unbiased and efficient pricing." However, 
in real markets, investor behavior is often influenced by irrational factors. Especially during periods 
of volatile markets or extreme sentiment, futures prices are prone to experiencing "pricing distortion," 
where they deviate from spot prices [1]. In recent years, with the acceleration of information 
dissemination and the prevalence of leveraged trading, the impact of investor sentiment on futures 
market price behavior has become increasingly significant. Uncovering the underlying mechanisms 
linking investor sentiment to pricing efficiency has become a key research topic at the intersection of 
financial engineering and behavioral finance [2]. 

Existing research has shown that investor sentiment, as a concentrated manifestation of market 
irrationality, can significantly influence the pricing bias and volatility of financial assets such as 
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stocks, bonds, and options [3]. Most relevant literature uses metrics such as basis, price deviation, 
and volatility residual to measure pricing efficiency. Sentiment indices are constructed using methods 
such as principal component analysis (PCA) and empirically tested using multiple linear regression 
or fixed-effects models. These studies have achieved some success in identifying the relevance of 
sentiment to pricing bias, but two key limitations remain: First, traditional regression methods 
struggle to effectively capture the complex interactions between high-dimensional sentiment features 
and market variables [4]. Second, linear models overlook the nonlinear, heterogeneous, and time-
varying nature of sentiment influences, making it difficult to capture "local treatment effects" and 
individual differences in causal inference [5]. 

To address these issues, this paper introduces a double machine learning (DML) and generalized 
random forest (GRF) approach within the Neyman-Rubin causal inference framework to 
systematically evaluate the causal effect of investor sentiment on futures pricing efficiency [6]. The 
double machine learning approach effectively identifies the average treatment effect (ATE) of 
sentiment variables through cross-fitting and high-dimensional variable modelling [7]. The GRF 
further captures the conditional average treatment effect (CATE), revealing the heterogeneous 
responses of sentiment shocks to pricing efficiency under different market conditions and investor 
behavioral characteristics [8]. Compared to traditional linear models, this combined approach offers 
greater flexibility, robustness, and explanatory power, providing a new approach for modeling and 
regulating irrational behavior in futures markets. 

This paper's main contributions lie in the following three areas: First, it constructs an investor 
sentiment index that integrates high-frequency trading behavior indicators and online sentiment data, 
improving the accuracy and immediacy of sentiment measurement; Second, it introduces the DML 
and GRF causal machine learning methods into the study of futures market pricing efficiency for the 
first time, systematically identifying average and heterogeneous causal effects; Third, through 
empirical testing, it reveals the dynamic impact of sentiment shocks on pricing efficiency during bull-
bear transitions, major event shocks, and periods of extreme volatility. The paper is organized as 
follows: Section 2 reviews relevant literature; Section 3 introduces variable construction and data 
sources; Section 4 explains the causal modeling method and implementation steps; Section 5 presents 
empirical results and robustness analysis; and Section 6 concludes the paper and offers policy 
recommendations. 

2. Related Work 

In rational expectations financial models, futures prices should reflect the market's average 
expectation of future spot prices, with fluctuations driven by fundamental information [9]. However, 
actual market operations are far from completely rational. Investor sentiment, a collective 
psychological phenomenon, often amplifies irrational market price fluctuations in environments of 
information asymmetry, high volatility, or unexpected events. Particularly in futures markets, where 
leverage is frequently used and expectations dominate trading decisions, emotional fluctuations are 
easily amplified through rapid trading reactions and herd behavior, thereby biasing futures prices 
[10]. 

In this context, futures pricing efficiency is influenced not only by fundamental drivers but also 
by behavioral factors [11]. When sentiment is excessive, the market may overestimate future prices, 
driving up futures prices; when sentiment is low, panic-fueled expectations may emerge, depressing 
prices. These price fluctuations that deviate from fundamental values directly reflect declining futures 
pricing efficiency. Therefore, systematically identifying the pathways through which sentiment 
influences futures pricing efficiency helps understand the underlying mechanisms of market failure 
[12]. 
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Methods for measuring futures pricing efficiency are constantly evolving, with the most 
commonly used methods including basis measures, relative error, and price residual volatility. These 
indicators vary in form, but essentially all operate on the core logic of "whether futures prices 
reasonably reflect spot expectations." However, due to the inherent volatility of futures prices and 
their susceptibility to short-term liquidity and speculative trading, a single indicator often fails to fully 
capture the state of market efficiency [13]. 

In terms of modeling, traditional statistical regression models typically assume a linear relationship 
between variables. This assumption often appears overly simplistic given the complex interactions 
between sentiment shocks and market behavior [14]. Furthermore, changes in pricing efficiency can 
exhibit significant heterogeneity. For example, the sensitivity of futures prices to sentiment can vary 
significantly across different market states (bull/bear), trading phases (opening/closing), and 
sentiment levels (extreme panic/extreme optimism). Traditional models clearly fall short in fully 
capturing these underlying nonlinear structures and local patterns [15]. 

Constructing an indicator system that can represent market sentiment is fundamental to studying 
the impact of sentiment. Essentially, investor sentiment can be viewed as a comprehensive reflection 
of multiple factors, including trading behavior, expectations, and market confidence. Therefore, the 
construction of a sentiment index should encompass as many dimensions as possible, such as market 
liquidity indicators, capital flow behavior, price fluctuations, account activity frequency, and even 
new variables such as market sentiment and online activity. 

Sentiment indices can be obtained through a weighted average of standardized indicators or by 
extracting principal component features from multiple proxy variables using dimensionality reduction 
techniques. Furthermore, text-based sentiment recognition methods can be introduced, such as using 
natural language processing to extract investor sentiment trends from social platforms and financial 
media, thereby constructing a fused, multi-scale emotional expression structure. This approach not 
only enables dynamic tracking of investor psychology but also provides a stronger signal foundation 
for subsequent causal identification. 

In summary, current research on futures pricing efficiency still has significant shortcomings in 
terms of methodology and variable systems. On the one hand, traditional regression methods struggle 
to capture complex causal relationships and heterogeneous responses, making them unable to 
effectively identify the true impact of sentiment variables. On the other hand, existing sentiment 
measurement methods often fail to fully integrate structural market characteristics with high-
frequency, unstructured data, resulting in insufficient information utilization in sentiment indices. 
This research addresses these two points: first, by integrating structured behavioral data with 
unstructured textual signals, we construct a more accurate and dynamic sentiment index system. 
Second, we introduce nonparametric causal inference methods, including dual machine learning and 
generalized random forests, to identify the causal pathways and heterogeneous impacts of sentiment 
variables on futures pricing efficiency. This combination will help transcend the limitations of linear 
modeling and provide a more fundamental understanding of the embedded structure of behavioral 
factors in price mechanisms. 

3. Variable Construction and Data Description 

3.1 Data Source and Sample Range 

The data used in this study covers core indicators of China's stock index futures market and its 
corresponding spot market. The primary sources include the China Financial Futures Exchange 
(CFFEX), Wind Financial Terminal, and selected online public platforms (such as Eastmoney, Baidu 
Index, and Snowball). The CSI 300 Index Futures (IF) is used as a representative futures product due 
to its high liquidity and representativeness, making it a suitable sample for market pricing efficiency 
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research. 
The research sample period is from January 1, 2016, to December 31, 2023, with daily data. This 

period encompasses multiple sentiment and market volatility events, such as stock market circuit 
breakers, the impact of the COVID-19 pandemic, and policy transitions, helping to capture the 
dynamics of sentiment-driven effects under varying market conditions. 

3.2 Construction of Pricing Efficiency Index 

Futures pricing efficiency reflects the degree to which futures prices respond to spot price 
expectations. A well-constructed efficiency metric should capture both the rationality and deviation 
amplitude of pricing. This study selects the following three core indicators to measure pricing 
efficiency, as shown in Table 1: 

Table 1: Core Indicator Table 

Metric Name Mathematical Definition Economic Interpretation 
Absolute Basis  AbsBasisₜ = |Fₜ - Sₜ| Measures the absolute deviation between futures 

and spot prices 
Relative Bias  RelBiasₜ = (Fₜ - Sₜ) / Sₜ Indicates the percentage deviation relative to spot 

prices 
Bias Volatility  VarBiasₜ = Var(Fₜ - Sₜ) Reflects the overall instability of pricing deviation 

Here, Fₜ represents the closing price of the futures contract on day t, and Sₜ represents the closing 
price of the corresponding spot index (CSI 300). The above indicators respectively capture static 
deviation and cross-period dynamic deviation, providing multidimensional variable support for 
subsequent causal inference analysis. 

3.3 Methodology for Constructing the Investor Sentiment Index 

Investor sentiment is a latent variable that cannot be directly observed and must be indirectly 
extracted through a series of proxy indicators. This paper comprehensively considers the intensity of 
external emotions and the characteristics of trading behavior and constructs the following five types 
of sentiment indicators, as shown in Table 2: 

Table 2: Agent Indicator Table 

No. Indicator Name Construction Method Indicator Interpretation 

1 Turnover Total trading volume / Market 
value Represents market activity level 

2 ADR (Advance-
Decline Ratio) 

Number of rising stocks / 
Number of falling stocks 

Indicates bullish or panic 
sentiment in the market 

3 Margin Balance 
Ratio Margin balance / Market value Represents the level of retail 

leverage sentiment 

4 Volatility Index 
(HV) 

Rolling standard deviation of 
returns Reflects market uncertainty 

5 Buzz Index Standardized web search heat 
index 

Indicates the attention and 
popularity of market topics 

After standardizing the above indicators, the principal component analysis (PCA) method is 
applied to extract the principal factors and construct a comprehensive investor sentiment index 
Sentimentₜ, defined as: 

 1 1 2 2
t t t

t k kSentiment z z zλ λ λ= + + +  (1) 

133



 

𝑧𝑧𝑘𝑘𝑡𝑡  represents the standardized value of the 𝑘𝑘-th sentiment proxy variable, and 𝜆𝜆𝑘𝑘 is the loading 
coefficient of the first principal component extracted via PCA. A higher value of the index indicates 
stronger market sentiment, while a lower value implies weaker sentiment. 

3.4 Control variable system setting 

To eliminate other market structural factors that may interfere with the relationship between 
sentiment and pricing efficiency, this paper introduces the following control variable system, as 
shown in Table 3: 

Table 3: Control Variables Table 

Control Variable Name Symbol Description 
Risk-free Interest Rate rₜ Approximated by Shibor overnight rate 

Remaining Time to Maturity Maturityₜ Remaining trading days of the contract 
Historical Volatility Volₜ Standard deviation of log returns over the past 20 days 

Market Return Returnₜ Return of CSI 300 Index on the previous trading day 
Change Rate of Trading 

Volume ΔQₜ Growth ratio of trading volume compared with the 
previous day 

This control variable system covers multiple dimensions such as macro-capital costs, futures 
contract structure, short-term volatility and market trends, providing a sufficient basis for adjusting 
confounding variables for causal modeling. 

To facilitate the understanding of the modeling structure, this article draws the following variable 
system dependency structure, as shown in Figure 1: 

 
Figure 1: Variable system architecture diagram 

4. Causal Modeling Methods and Implementation 

4.1 Causal Inference Framework 

This study aims to identify the causal effect of investor sentiment on futures pricing efficiency. 
Traditional methods often fail to identify the causal relationships between unobserved sentiment 
variables and market variables. To address these challenges, this paper employs DML and GRF 
methods, which can detect the interactions between high-dimensional variables and infer the causal 
effect of sentiment on futures pricing efficiency.  

The core of causal inference is based on the Neyman-Rubin potential outcomes framework, which 
defines the ‘treatment effect’ and ‘control effect’ to identify causal relationships. In this paper, 
investor sentiment is treated as the ‘treatment variable’ 𝑇𝑇𝑡𝑡, and futures pricing efficiency (e.g., Basis, 
Relative Bias) is treated as the ‘outcome variable’ 𝑌𝑌𝑡𝑡, where the causal effect is the difference between 
the outcomes under different scenarios. By using this framework, this study aims to estimate the ATE 
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of sentiment on pricing efficiency, defined as: 

 ATE = E[Yt(1) - Yt(0)]  (2) 

Where, 𝑌𝑌𝑡𝑡(1)  represents the futures pricing efficiency when sentiment changes, and 𝑌𝑌𝑡𝑡(0) 
represents the futures pricing efficiency when no sentiment change occurs. To further explore the 
quality of the effect of investor sentiment on futures pricing efficiency, this study introduces the 
CATE, which helps us identify how investor sentiment affects futures pricing efficiency in different 
market conditions. The formula for CATE is: 

 [ (1) (0) ]t t t tCATE E Y Y X= − ∣  (3) 

By estimating the CATE, we can better understand the heterogeneous impact of sentiment on 
futures pricing efficiency in different market scenarios. 

4.2 DML Method 

To overcome the biases that may occur in high-dimensional data with traditional regression 
methods, this study employs the Double Machine Learning (DML) method for causal inference. The 
DML method uses a two-step regression modeling approach, where the relationships between control 
variables and the treatment variable are first estimated, and then the predicted values are used to 
estimate the causal effect of sentiment on futures pricing efficiency, effectively removing selection 
bias from the variables. 

The core idea of Double Machine Learning is to first use machine learning algorithms to estimate 
the predicted values of all covariates (including sentiment and control variables), and then incorporate 
these predicted values into the causal inference model to reduce the impact of variable selection on 
the causal estimation. 

The DML method involves the following two steps: Step One: Estimate the relationship between 
the treatment variable (sentiment) and the control variables: 

We use machine learning algorithms (such as Random Forest, XGBoost, etc.) to model the 
sentiment variable 𝑇𝑇𝑡𝑡 and the pricing efficiency 𝑌𝑌𝑡𝑡, obtaining their predicted values 𝑇𝑇�𝑡𝑡 and 𝑌𝑌�𝑡𝑡. 

Step Two: Estimate the causal effect:A linear regression model is used to estimate the effect of 
sentiment on pricing efficiency: 

  ( )t t t t tY Y T Tα− = − +   (4) 

This regression step helps to identify the true causal effect of sentiment changes on pricing 
efficiency while controlling for the effects of other variables. 

Through the DML method, we can perform robust causal inference with high-dimensional data, 
avoiding overfitting or bias that might arise from traditional regression models. 

4.3 GRF Method 

To further capture the nonlinear impact of sentiment changes on futures pricing efficiency, this 
study also employs the GRF method. GRF is an extension of the traditional random forest method, 
specifically designed for causal inference. It estimates the CATE and is capable of handling complex 
nonlinear relationships between variables.  

Working Principle of GRF The core idea of GRF is to construct multiple decision trees, where 
each tree estimates the causal effect for different subgroups of the data by splitting it based on features 
and treatment variables. GRF uses the following steps to calculate CATE:  Construct Multiple 
Decision Trees: In each decision tree, GRF uses the feature variables 𝑋𝑋𝑡𝑡 and the treatment variable 
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𝑇𝑇𝑡𝑡 to split the data and estimate the causal effect at each leaf node.  Local Weighted Regression: 
Within each node, GRF estimates the CATE by performing local regression on the treated and control 
groups: 

 [ (1) (0) ]t t t tCATE E Y Y X= − ∣  (5) 

Aggregate the Results from Multiple Trees: Finally, GRF aggregates the causal estimates from 
multiple trees to provide a robust estimate of the CATE. This approach allows GRF to capture 
heterogeneity in treatment effects across different samples. 

The advantage of GRF lies in its ability to model high-dimensional data with complex, nonlinear 
relationships, providing interpretable causal estimates and capturing heterogeneity in causal effects. 

5. Empirical Results 

5.1 Descriptive statistical analysis 

In the application of the DML model, we first predict the sentiment variables and control variables 
using machine learning algorithms (such as random forests). Then, we use these predicted values to 
conduct regression analysis to estimate the causal effect of investor sentiment on futures pricing 
efficiency. The results are shown in Table 4. 

Table 4: DML model estimation results 

Variable Name Coefficient Standard Error t-statistic p-value 
Investor Sentiment (Sentiment) 0.108 0.045 2.40 0.016 

Risk-free Interest Rate -0.325 0.120 -2.71 0.007 
Remaining Maturity 0.021 0.014 1.50 0.133 

Market Return 0.215 0.045 4.78 0.000 
Change in Trading Volume 0.075 0.035 2.14 0.034 

In the DML model, Sentiment has a significant impact on pricing efficiency, with a coefficient of 
0.108 and a p-value of 0.016, indicating that sentiment has a positive impact on futures pricing bias. 
In other words, increased sentiment leads to greater pricing bias. 

5.2 GRF Model Estimation Results 

 
Figure 2: Causal Forest - Conditional Average Treatment Effect 

To further explore the heterogeneous impact of sentiment on pricing efficiency, we used GRF to 
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estimate CATE. The GRF model is capable of estimating the heterogeneous impact of sentiment on 
pricing bias under different market conditions. The results are shown in Figure 2. 

The GRF model's estimation results show that in highly volatile markets (e.g., when market returns 
are negative), increased sentiment significantly increases pricing bias. In contrast, in low-volatility 
environments, sentiment has a relatively small impact on pricing efficiency. This suggests that the 
impact of sentiment on pricing efficiency is not only nonlinear but also varies with market volatility. 

5.3 Causal effect analysis 

By combining the DML and GRF models, we can clearly identify the causal effect of investor 
sentiment on futures pricing efficiency. The ATE of the DML model indicates that sentiment 
fluctuations have a significant positive impact on pricing efficiency. The GRF model further reveals 
the heterogeneous impact of sentiment on pricing efficiency, particularly during periods of high 
market volatility, where the impact of sentiment on pricing efficiency is more pronounced. The results 
are shown in Figure 3. 

 
Figure 3: Causal Effect of Investor Sentiment on Futures Pricing Efficiency 

Through these analysis results, we can conclude that investor sentiment is an important driving 
factor of pricing deviations in the futures market, especially when market uncertainty is high, the 
impact of changes in sentiment on pricing efficiency is more prominent. 

5.4 Robustness test 

To validate the robustness of the model, we conducted several alternative tests, including the 
following: Alternative sentiment variable construction: We replaced the sentiment proxy with a 
natural language processing (NLP) sentiment analysis based on a sentiment lexicon rather than PCA. 
Different pricing efficiency metrics: We replaced the basis (AbsBasis) with the volatility residual 
(Volatility Residual) as a measure of pricing efficiency. Time-segment analysis: We divided the 
sample data into three phases: bull market, bear market, and volatile market, and ran model 
regressions on each phase to test the stability of the sentiment effect. 

The results are shown in Table 5. 
The robustness test results show that the impact of emotions on futures pricing efficiency remains 

consistent under different emotion proxy methods and pricing efficiency indicators, and the emotion 
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effect is most significant in the bull market, further verifying the causal impact of emotions on pricing 
efficiency. 

Table 5: Robustness test results 

Test Method Coefficient Standard Error t-statistic p-value 
Substitute Sentiment Variable (NLP 

Sentiment Analysis) 0.120 0.048 2.50 0.013 

Use of Volatility Residual (AbsBasis) 0.095 0.041 2.31 0.023 
Bull Market Subsample Analysis 0.135 0.050 2.70 0.008 
Bear Market Subsample Analysis 0.081 0.052 1.56 0.118 

6. Conclusion and Outlook 

This study introduced the DML and GRF methods to deeply explore the impact of investor 
sentiment on futures pricing efficiency. The empirical results show that investor sentiment has a 
significant positive impact on futures pricing efficiency, especially when market volatility is high, 
the impact of sentiment fluctuations on pricing deviations is more significant. Robustness tests further 
verified the stability of the impact of sentiment. Through this study, we found that sentiment not only 
has a greater impact on pricing efficiency in bull markets, but its effect is relatively weaker in bear 
markets or volatile markets. Therefore, policy recommendations include strengthening market 
sentiment monitoring, optimizing risk management, and strengthening investor education to improve 
market stability and efficiency. However, this study also has certain limitations. In the future, it is 
possible to combine more high-frequency data for sentiment measurement, expand to other markets, 
and use dynamic causal models to further verify the sentiment effect. Overall, this study provides 
new theoretical basis and empirical support for the relationship between sentiment and pricing 
efficiency in the futures market. 
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