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Abstract: This study proposes a power load forecasting method that combines the Informer 

model with the Ant Colony Optimization (ACO) algorithm. ACO optimizes the 

hyperparameters of the Informer model, significantly improving the model's accuracy and 

stability in power load forecasting. The Informer model utilizes its ProbSparse Attention 

technology to efficiently process long-term time series data and capture long-term 

dependencies in power load variations. ACO optimizes hyperparameter combinations 

through global search, avoiding the limitations of manual parameter tuning. Experimental 

results demonstrate that the proposed model outperforms traditional LSTM and TCN models 

across multiple evaluation metrics, demonstrating greater stability and prediction accuracy, 

particularly during peak load periods. This method provides effective technical support for 

smart grid scheduling and resource optimization.

1. Introduction 

Power load forecasting plays a crucial role in smart grids and the integration of renewable energy. 

With the continuous development of power systems, especially the rapid growth of renewable energy, 

grid scheduling and resource allocation have become increasingly complex. The accuracy of power 

load forecasting directly impacts grid operational efficiency, cost optimization, and stability [1]. 

Therefore, improving the accuracy and stability of power load forecasting has become a key research 

topic in power system management. Existing power load forecasting methods often face challenges 

such as nonlinearity, nonstationarity, and multi-source heterogeneous data, making them difficult to 

address the increasingly complex power load forecasting task [2]. 

Traditional power load forecasting methods, such as time series methods based on regression 

analysis (e.g., ARIMA) and classical machine learning methods (e.g., support vector machines and 

random forests), have addressed short-term load forecasting challenges to a certain extent [3]. 

However, they have significant limitations when dealing with complex time series dependencies and 

nonlinear relationships. In recent years, deep learning methods (e.g., LSTM, CNN, and TCN) have 

gradually become mainstream approaches for power load forecasting due to their superior 

performance in modeling time series data [4]. However, these deep learning models still face 

challenges in hyperparameter selection. In particular, they suffer from complex model structures, long 
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training times, and a tendency to fall into local optima, which can undermine their prediction 

performance [5]. This paper proposes a hybrid model based on the Informer and Ant Colony 

Optimization (ACO) algorithm for power load forecasting. Specifically, we employ the Informer 

model to process long time series data. Using the ProbSparse Attention mechanism, we effectively 

reduce computational complexity and capture long-term dependencies in power load data [6]. 

Furthermore, to overcome the difficulty of selecting hyperparameters in the Informer, we introduce 

ACO to optimize key hyperparameters, eliminating the uncertainty associated with manual tuning. 

This method automatically searches for the optimal hyperparameter combination, improving the 

model's forecasting accuracy and stability for complex time series data. Experiments validate the 

advantages of this method for power load forecasting. Compared to traditional methods and existing 

deep learning models, the proposed combined model demonstrates significant improvements in both 

accuracy and stability. This paper is organized as follows: Section II reviews relevant research in the 

field of power load forecasting and analyzes the advantages and disadvantages of existing methods; 

Section III details the theoretical background and methodological process of the Informer + ACO 

combination model; Section IV presents the experimental design and result analysis, including the 

experimental dataset, model settings, and evaluation indicators; Section V provides an in-depth 

discussion of the experimental results and proposes the advantages and limitations of the method; 

Finally, Section VI summarizes the main contributions of this paper and discusses future research 

directions. 

2. Related work 

Power load forecasting is a key technology for power system scheduling and optimization. 

Traditional power load forecasting methods are primarily based on statistical models, such as the 

ARIMA and Exponential Smoothing (ETS) [7]. These methods perform well for short-term load 

forecasting, but due to the nonlinear and nonstationary nature of power load data, traditional methods 

have limitations for complex forecasting tasks. With the rapid development of deep learning, methods 

such as long short-term memory (LSTM), convolutional neural networks (CNN), and temporal 

convolutional networks (TCN) have gradually become mainstream technologies for power load 

forecasting [8]. In particular, the Informer model, an improved version of the Transformer, 

significantly improves its ability to process long time series data by incorporating ProbSparse 

Attention technology [9]. However, the Informer model still faces the challenge of hyperparameter 

optimization. Traditional manual parameter tuning methods cannot fully tap its potential and are 

computationally expensive [10]. 

To overcome this problem, recent research has begun to employ intelligent optimization 

algorithms to optimize the hyperparameters of deep learning models [11]. Common optimization 

methods, including Bayesian optimization and genetic algorithms, can find optimal hyperparameter 

combinations through global search, but their search efficiency is low in high-dimensional spaces. 

Compared to these methods, the ACO algorithm, which mimics the foraging behavior of ants, 

possesses powerful global search capabilities, effectively avoiding local optima and making it suitable 

for hyperparameter tuning of deep learning models [12]. Previous studies have demonstrated that 

ACO offers significant advantages in optimizing neural network hyperparameters and can improve 

model forecasting performance. 

Despite this, existing power load forecasting methods still face challenges such as data scarcity 

and high computational overhead, particularly when processing long time series data and complex 

nonlinear relationships. Traditional optimization algorithms are inefficient, and deep learning model 

training is complex and computationally intensive. Therefore, combining advanced deep learning 

models with optimization algorithms to improve the accuracy and stability of power load forecasting 
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remains a promising research direction. 

This paper proposes a novel model combining Informer and ACO to automatically optimize 

hyperparameters in power load forecasting, improving the model's accuracy and stability when 

processing complex time series data. Compared with traditional methods, this method can effectively 

improve prediction accuracy and avoid the difficulties caused by hyperparameter selection. 

3. Methodology 

3.1 Model framework 

The power load forecasting method proposed in this paper combines the Informer model and ACO 

to achieve automatic hyperparameter optimization and accurate modeling of time series data. The 

core concept of this method is to use ACO to globally optimize the hyperparameters of the Informer 

model, thereby improving the model's accuracy and stability in power load forecasting tasks. 

Specifically, the Informer model is used to handle the time series dependencies in power load data, 

while ACO optimizes the Informer hyperparameters by simulating ant foraging behavior, avoiding 

the limitations of manual parameter tuning [13]. 

The overall structure of the model is shown in Figure 1. First, power load data is input into the 

Informer model for time series modeling. Then, ACO searches the hyperparameter space to find the 

optimal parameter combination. After multiple rounds of iteration, the optimized Informer model 

demonstrates higher accuracy and robustness in power load forecasting tasks. 

 

Figure 1: Power load forecasting model framework diagram 

3.2 Informer Model 

In power load forecasting, the complexity, nonlinearity, and long-term dependencies of time series 

data pose significant challenges for traditional deep learning methods. 

Informer, a Transformer-based time series data modeling method, captures long-term 

dependencies while maintaining computational efficiency, making it particularly suitable for 

processing data with long-term time series dependencies, such as power load data. Unlike traditional 

Transformer models, Informer introduces ProbSparse Attention technology, which reduces 

computational resource consumption by sparsifying the attention matrix, enabling the model to 

maintain efficiency even when processing long time series data [14]. 

In the informer model, input power load data is modeled through an encoder and decoder structure. 
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First, the input power load data undergoes multiple layers of causal convolution and dilated 

convolution operations in the encoder. In these operations, the dilation factor expands the receptive 

field, thereby capturing longer-term dependencies. Causal convolution ensures that the model only 

uses data from the current and previous moments for prediction, avoiding "peeks" into future 

information [15]. 

The decoder portion of the model uses the features extracted by the encoder to predict future loads. 

The decoder uses a self-attention mechanism to calculate the similarity between different time steps 

and determine the importance of features at different time steps in the final prediction. This 

mechanism adaptively focuses on important time steps and ignores irrelevant ones, thereby improving 

prediction accuracy. 

The key formula of the informer model is as follows, defining the causal convolution process based 

on convolution operations and the mathematical representation of dilated convolution: 
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Where 𝑍(𝑡) is the prediction at time 𝑡, 𝜔𝑛 is the weight coefficient of the convolution kernel, 𝑋(𝑡) 
is the input sequence, 𝑑 is the dilation factor that controls the sampling interval during convolution, 

and 𝑘 is the size of the convolution kernel. 

To further optimize the Informer model, the ProbSparse Attention mechanism selects the 

important time steps, sparsifying the attention matrix, which reduces computation complexity. The 

attention calculation formula is as follows: 
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Where 𝑄  is the query matrix, 𝐾  is the key matrix, 𝑉  is the value matrix, and 𝑑𝑘  is the 

dimensionality of the keys. ProbSparse Attention reduces computation by sparsifying less important 

keys, ensuring efficient computation while maintaining high performance even in Iong sequence data. 

3.3 ACO 

ACO is a global optimization algorithm that simulates the foraging behavior of ants and possesses 

strong global search capabilities. In the optimization problem, ACO can avoid local optima by 

simulating the cooperation among ants and the transmission of pheromones, ultimately finding the 

global optimum in the search space. In this study, ACO is applied to optimize the hyperparameters 

of the Informer model. Specifically, we treat the hyperparameters of Informer as the optimization 

targets for the ants, and ACO is used to search through the hyperparameter space to find the optimal 

hyperparameter combination. 

In practice, ACO simulates the movement of ants within the search space, using pheromone trails 

to guide the search, and ultimately finding the optimal hyperparameter combination. Each ant 

represents a hyperparameter combination, and the ants move through the search space by selecting 

paths based on pheromone intensity, updating the pheromone concentration according to the 

prediction error of each hyperparameter combination. Through multiple iterations, ACO gradually 

optimizes the hyperparameters, thereby improving the performance of the Informer model. 

The basic pheromone update process in ACO can be described by the following equation: 
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Where 𝛥𝑇  represents the change in pheromone, 𝑁  is the total number of ants, and 𝛥𝑇𝑖  is the 
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pheromone contribution made by each ant along its path. 

Through this optimization method, ACO efficiently searches the hyperparameter space of Informer, 

avoiding the local search pitfalls. After each iteration, the optimal hyperparameter combination 

significantly enhances the prediction accuracy of the Informer model, improving its performance in 

the power load forecasting task. 

3.4 Informer + ACO combination method 

In the Informer + ACO combination, ACO is used to optimize the hyperparameters of the Informer 

model, including the learning rate, regularization parameter, number of attention heads, number of 

layers, and convolution kernel size. Combined with ACO's global search capabilities, it efficiently 

finds the optimal hyperparameter combination within a large search space, thereby improving the 

model's prediction accuracy and stability. 

The core concept of the optimization process is achieved through the following steps: 

Hyperparameter Space Definition: Define the hyperparameter space of the Informer model, 

including the regularization parameter, learning rate, number of convolution kernels, and so on. 

ACO Initialization: Initialize the ant colony and randomly generate several initial solutions in the 

hyperparameter space, each corresponding to a hyperparameter combination. 

Evaluation and Update: Each ant trains the Informer model based on its hyperparameter 

combination and calculates the prediction error. Based on the error, the pheromone is updated to 

select the optimal hyperparameter combination. 

Iterative Optimization: Through multiple rounds of iterations, the hyperparameter combination is 

gradually optimized until the optimal solution is found. 

Ultimately, the Informer model optimized by ACO can achieve higher accuracy in power load 

forecasting tasks and effectively avoid the shortcomings of traditional manual parameter adjustment. 

3.5 Model Training and Evaluation 

In the training process, we split the power load dataset into training and testing sets and use cross-

validation to evaluate the performance of the model. To ensure the stability and reliability of the 

experimental results, we use multiple iterations and obtain average values for performance evaluation. 

The commonly used evaluation metrics include Root Mean Square Error (RMSE), Mean Absolute 

Error (MAE), and Mean Absolute Percentage Error (MAPE), which reflect the model’s performance 

in terms of prediction accuracy and reliability. 

The training process of the model can be expressed by the following loss function: 
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Where 𝑦̂𝑖 is the predicted value, 𝑦𝑖 is the actual value, and 𝑁 is the number of samples. 

3.6 Computational Complexity and Time Efficiency 

Considering the computational overhead of ACO and Informer, the time complexity of the model 

is as follows: 

 ( )O N T m   (5) 

Where 𝑁is the number of ants, 𝑇is the maximum number of iterations, and 𝑚is the dimensionality 

of the hyperparameter space. The optimization process of ACO requires multiple iterations to explore 

different hyperparameter combinations. As the number of iterations increases, the rate of convergence 
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improves, and ultimately the algorithm finds the optimal solution within a relatively short time 

4. Experiments and Results 

4.1 Data Description 

In this study, we used a publicly available electricity load dataset to evaluate the performance of 

the proposed Informer + ACO model. This dataset contains one year's worth of hourly electricity 

consumption data from a regional power grid. It also includes meteorological information (such as 

temperature, humidity, and precipitation), providing valuable context for the forecasting model. The 

dataset was divided into two parts: 80% for training and 20% for testing. 

This dataset contains complex time-series fluctuations and long-term trends, making the power 

load forecasting task challenging. Meteorological data, as auxiliary features, provides additional 

information necessary for forecasting, which can significantly influence changes in electricity 

demand and thus improve forecast accuracy. 

4.2 Experimental Setup 

To evaluate the performance of the Informer + ACO model, we first preprocessed and normalized 

the dataset to ensure stability during training. We then trained the Informer model while optimizing 

its hyperparameters using ACO. During training, ACO improved the model's predictive performance 

by optimizing Informer hyperparameters (such as the learning rate, regularization coefficient, and 

convolution kernel size). 

For comparison, we implemented the following baseline models: the Informer model (without 

hyperparameter optimization); the LSTM model, a common time series forecasting method; the TCN 

model, a convolutional neural network optimized for time series data; and the Informer model (using 

grid search for hyperparameter tuning). 

We used 10-fold cross-validation to ensure the robustness of the experimental results and averaged 

the final evaluation metrics across multiple runs. 

4.3 Evaluation Metrics 

We used several standard evaluation metrics to measure the predictive performance of each model: 

Rmse: measures the square root of the squared difference between the predicted value and the 

actual value. A smaller RMSE indicates a higher prediction accuracy. 
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MAE: measures the mean absolute difference between predicted and actual values. A smaller 

MAE indicates a more accurate model. 
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MAPE: Measures the relative error between the predicted value and the actual value. This metric 

helps understand the relative accuracy of the model at different power load levels. 
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4.4 Results and Analysis 

The experimental results are shown in Table 1, which compares the performance of the proposed 

Informer + ACO model with other baseline models in terms of RMSE, MAE, and MAPE. 

Table 1: Prediction results analysis 

Model RMSE MAE MAPE (%) 

Informer (No Optimization) 15.23 12.35 6.28 

Informer (ACO Optimized) 12.14 9.56 4.75 

LSTM 17.56 14.22 7.34 

TCN 16.87 13.47 6.88 

As shown in Table 1, the Informer + ACO model outperforms the baseline model across all 

evaluation metrics, particularly achieving a significant improvement in RMSE, demonstrating its 

ability to effectively reduce large prediction errors. Compared to the unoptimized Informer model, 

the ACO-optimized model demonstrates improved performance across all metrics, particularly in 

RMSE and MAPE. 

In contrast, while the LSTM and TCN models also perform well, they are still inferior to the 

Informer + ACO model. This demonstrates that the Informer model has a clear advantage in handling 

long-term dependencies in time series data. Combined with ACO's hyperparameter optimization, the 

model's prediction accuracy is further improved. 

4.5 Convergence Analysis 

A key advantage of the ACO algorithm is its ability to quickly converge to the optimal solution. 

To illustrate this, we plotted the convergence curve of ACO's hyperparameter optimization during 

training. As shown in Figure 2, ACO converges quickly during the iterations, with the error gradually 

decreasing. 

 

Figure 2: Convergence curve of the ACO algorithm during hyperparameter optimization 

From the convergence analysis, it can be seen that the ACO algorithm is very efficient in the 

optimization process, can find the optimal solution in a relatively small number of iterations, and 

significantly improve the prediction accuracy of the model. 
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In addition to the convergence analysis, we also present a comparison of actual forecast results 

between the Informer + ACO model and the baseline model, as shown in Figure 3. The forecast curves 

in the figure show how well the Informer + ACO model fits the actual power load data. As can be 

seen, the Informer + ACO model's forecasts closely match the actual values, demonstrating 

particularly high accuracy during forecast trends and peak load periods. 

 

Figure 3: Comparison of power load forecasting results from different models 

As can be seen from the figure 3, the prediction curve of the Informer + ACO model is very close 

to the fluctuations of the actual data, indicating that the model has significant advantages in capturing 

the temporal changes and peak demand of power load. 

The error curves in figure 4 illustrate the error performance of different models (informer + aco, 

lstm, and tcn) in power load forecasting. The Informer + ACO model has the smallest error and 

minimal fluctuation, demonstrating high stability and forecasting accuracy. In contrast, the LSTM 

and TCN models exhibit large error fluctuations, particularly during peak load periods, where forecast 

errors significantly increase, indicating that both models have limitations when processing complex 

time series data. 

 

Figure 4: Comparison of prediction errors 
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Experimental results demonstrate that the Informer + ACO model demonstrates strong predictive 

power and stability in power load forecasting tasks. By leveraging the Informer model's ability to 

capture long-term dependencies and the ACO optimization algorithm's global search capabilities, the 

model achieves excellent results across multiple evaluation metrics. In particular, it effectively avoids 

both overfitting and underfitting when processing complex time series data. 

5. Conclusion and Outlook 

This study proposes a novel approach combining the Informer model and ACO for power load 

forecasting. By optimizing the hyperparameters of the Informer model using ACO, we significantly 

improve forecasting accuracy and stability, particularly when processing long time series data. 

Experimental results demonstrate that the proposed model outperforms traditional power load 

forecasting methods across multiple evaluation metrics (such as RMSE, MAE, and MAPE). 

Compared to other baseline models, such as LSTM and TCN, the proposed model exhibits stronger 

forecasting capabilities and lower error fluctuations. 

First, the Informer model, through its improved ProbSparse Attention technology, efficiently 

captures long-term dependencies in power load data, addressing the computational bottlenecks of 

traditional methods when processing long time series data. Combined with ACO, the Informer 

model's hyperparameters are automatically optimized, avoiding the limitations of manual parameter 

tuning and improving the model's generalization. Experimental results validate ACO's advantages in 

hyperparameter optimization, and its global search capability helps the Informer model achieve better 

forecasting results. 

Secondly, experiments also show that while LSTM and TCN models perform well on some time 

series data, their error fluctuations are significant, especially when dealing with peak power load 

periods, where prediction errors are particularly pronounced. The Informer + ACO model, on the 

other hand, not only excels in overall accuracy but also maintains high prediction stability in the face 

of highly volatile data, demonstrating greater robustness. 

However, despite the proposed model's impressive performance in many aspects, the 

computational overhead of ACO remains a concern when the hyperparameter search space is large. 

Future research could further improve the model's computational efficiency through parallelization 

and improved optimization algorithms, especially on large datasets. Furthermore, we can apply this 

method to more complex and diverse datasets to explore its potential in other fields, such as smart 

grids and weather forecasting. 
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