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Abstract: Causal Al and Large Scale Language Modeling (LLM) are the two main
directions of current Al research, focusing on causal reasoning and natural language
processing, respectively. This article attempts to answer a key question: Which is more
promising on the path towards safe general artificial intelligence (AGl), casual Al or LLM?
Research shows that although both have their own advantages, relying solely on either path
has significant limitations. Therefore, this article proposes a fusion path that combines the
causal inference ability of Causal Al with the language understanding and task execution
advantages of LLM, which may provide a more feasible solution for the implementation of
AGI. Ultimately, the comprehensive method proposed in this article may bring new insights
and directions for the development of artificial general intelligence.

1. Introduction
1.1 The Concept and Value of AGI

Artificial General Intelligence (AGI) is not merely “more powerful narrow AIL” It must
autonomously abstract rules and transfer them to tasks it has never seen—this “cross-domain
flexibility” is the core hallmark of human-level cognition [2]. Once realized, its impact will erupt
outside the lab first: AGI in hospitals can integrate imaging, genomics and medical history in real
time to deliver personalized diagnosis and treatment [1]; at climate-negotiation tables it can run high-
fidelity simulations of the “carbon-price — industry — employment” chain at once, pressing the
“policy-preview” button [8][9]. Of course, the flip side is immediately visible: when the system
begins to rewrite itself, how should responsibility be assigned? If its decisions eliminate certain jobs,
how can society redistribute value? These questions [3] remind us that AGI governance must iterate
in lock-step with algorithms, not as an after-the-fact patch.

1.2 Comparison of Causal Al and LLM in the Realization of AGI

"Who is closer to AGI?" Before answering this question, let's first take a look at an experimental
curve: when the questions were quietly switched to news events after 2024, the accuracy of GPT-40
in causal question answering dropped from 99.1% to 69.2%, a decline of nearly 30 percentage points
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[11]. This gap suggests that the "understanding” of large models is more of a compressed playback
of training corpora, rather than reverse engineering of causal mechanisms.

Recent reviews have used sharper wording to point out that LLMs hardly "explain away" spurious
correlations in the classic collider structure; at best, they are "giant parrots that can recite causal
phrases” [13][14]. In contrast, Causal Al explicitly writes the intervention relationships between
variables into structural equations, thereby allowing humans to "turn knobs" to verify hypotheses
outside the Turing Test [15].

However, language models remain an indispensable "universal interface.” They can parse "Please
place the red cylinder on the north side of the wooden box" into executable code in milliseconds. The
danger lies in the fact that Wu et al. simply replaced the verb "pick" with "grab," causing the robot's
success rate to plummet by 14.6%-22.2% [12]—a synonymous rewrite can shatter cross-modal
alignment. If AGI cannot be immune to such "micro-seismic disturbances," its ticket to the operating
table or the highway should rightfully be temporarily withheld.

Therefore, instead of choosing between Causal Al and LLMs, it would be better to regard the
former as a "causal verification layer" and the latter as a "semantic interface layer": let SCM first
issue a "certification of intervenability"” for the action plan, and then hand it over to LLM to complete
the final natural language interaction. The stitching of these two paths may be the shortest plank to a
safe AGI— at least, more reliable than waiting for a single paradigm to revolutionize itself [4].

With the rise and progress of wireless sensor network research, how to locate and track moving
targets using wireless sensor networks has become an important research topic of target tracking
[5][6]. The nodes consisting of wireless sensor network has the characteristics of small volume, low
price and low energy consumption. Nodes can transmit information through wireless communication
and ad hoc network. These features make the moving target tracking system based on wireless sensor
network have obvious advantages than traditional moving target tracking system [7][8]. Although the
moving target tracking based on wireless sensor network has many advantages, the nature of the
wireless sensor network is different from the ordinary network. The wireless sensor network itself
has a large number of nodes, nodes are prone to failure, energy is constrained and transmission is
unreliable. The detection ability, computing ability, storage ability and so on of nodes consisting of
wireless sensor network are seriously limited. All of these put forward challenge for the design and
implementation of moving target tracking system based on wireless sensor network.

2. Characteristics and Advantages of Causal Al

Causal Al is an artificial intelligence system based on causal relationships. It relies on
understanding and modeling the causal relationships between events, thereby enabling prediction and
intervention. Recent systematic reviews have pointed out that large models are merely "causal
parrots,” while structural causal models can truly open up new frontiers in causal inference [13]. In
Table 1, the advantages of Causal Al are summarised. Table 1 reveals that Causal Al obtains its edge
from explicit edges: every arc in the SCM corresponds to a testable intervention, allowing doctors or
policy-makers to read off “f = 0.3 as a 30 % drop in readmission risk per 1 mmol/L glucose reduction
without post-hoc visualisation [15].

Table 1: Advantages of Causal Al

Core Features | Advantages Technical Advantages Application Scenarios
It performs reasoning and | Compared to machine learning In medical diagnosis,
prediction by identifying | methods that only fit data, its Causal Al uses do-

High Precision | and utilizing real causal predictions are based on causal | calculus to quantify the
relationships, rather than | mechanisms, resulting in higher | counterfactual risk of
merely relying on accuracy. "giving medication
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statistical patterns. It has
an advantage in dealing
with complex and
uncertain problems.

before examination,"
rather than just reporting
correlation strength
[15].

Strong
Explainability

It can model causal
relationships, thereby
explaining the reasons
and basis for prediction
results and assisting
human decision-making.

The model output is transparent,
unlike the "black box" decision-
making of LLMs, which is
crucial in decision support and
risk assessment.

The weight of each edge
represents the
intervention effect.
Doctors can directly
read that "p = 0.3"
means that for every 1
mmol/L decrease in
blood sugar, the
probability of
readmission decreases
by 30%, without the
need for post hoc
visualization [15].

Intervention

It not only predicts but
also has the ability to
intervene, allowing it to

LLMs are usually limited to
prediction or content generation,
while Causal Al can answer

G=Reasoner grafts
external knowledge
retrieval onto LLMs and
achieves an additional
2.3-4.1 percentage
points on the new
CausalProbe-Hard
scenario [11].

stability and
intervenability of outputs
under disturbances.

rates potentially dropping by
more than 20% [12], while
Causal Al remains stable.

- simulate or guide actual . . . . Meanwhile,
Capability . intervention questions like L
actions to change the " Keshmirian's
, . What should be done to .
system's state and achieve : . " experiment shows that
L achieve a certain goal? L
optimization. LLMs' judgments of
causal strength are more
extreme than humans',
indirectly verifying the
necessity of SCM
posterior [18].
The frameV\_/ork pase_d N | The modeling framework is Medicine, finance,
causal relationships is oo . it
Broad : . decoupled from the specific economics, political
I universal, applicable to . . . .
Applicability . domain's surface features, science, intelligent
both natural and social L - .
. resulting in good transferability. | transportation
sciences.
With explicit structural In safety-critical scenarios,
priors, it is insensitive to II'_LMNI__M is _susceptlble to Safety-critical AGI
semantic perturbations in semantic equivalence-syntactic .
Strong ; L A scenarios such as robot
inputs and maintains the perturbation,” with task success
Robustness control and autonomous

driving

Overall, compared to parametric causal models, LLMs perform weakly and unstably in
"explaining away" effects in collider structures [10]. In safety-critical scenarios such as robot control,
LLM/VLM is easily triggered by "semantic equivalence-syntactic perturbation,” resulting in a task
success rate drop of over 20% [12]. Causal Al, with its explicit structural priors, maintains
intervenability and explainability under similar disturbances, providing a more robust route to safe

AGI.
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3. Characteristics and Advantages of LLMs

In Table 2, the characteristics and advantages of large language models are summarised. Table 2
shows how LLMs compensate for data sparsity via latent representations—rare trigrams still receive
plausible continuations—but also flags the Achilles heel: synonym substitution (pick — grab) can
raise robot failure rates by 14.6 %-22.2 % [12], exposing the fragility of cross-modal alignment.

Table 2: Advantages of Large Language Models

Core Features Advantages Typlca_l Application
Scenarios
By introducing latent variables to reduce the
. number of parameters, it can more Large-scale language
Handling Sparse . . .
effectively handle words that appear modeling, handling rare
Data . - _ .
infrequently in the training data, overcoming | words
the issue of data sparsity.
Latent variables can correspond to different
Resolving semantic interpretations, enabling the model | Word sense disambiguation,
Ambiguity to understand the correct meaning of semantic understanding
polysemous words based on context.
Capable of generating new language N_atural language generation,
Language . A dialogue systems, text
; sequences, rather than just predicting the L .
Generation summarization, creative
next word. -
writing
Latent variables correspond to different
semantic or grammatical concepts, allowing | Sentence classification,
Strong - - - .
Explainability the model to be analyzed for mFerpretgt_)lllty sentiment analysis,
to some extent and understand its decision- | explainable Al
making basis.
By introducing different latent variables, the
Flexible model architecture is highly flexible and can | Adaptation to various natural
Modeling be customized and adjusted according to language processing tasks
specific tasks and scenarios [7].

LLMs, through pretraining latent variables on large-scale corpora, are naturally adept at
compensating for statistical voids caused by data sparsity: even when a trigram appears only once in
the training set, the model can still provide reasonable continuation based on contextual embeddings.
This characteristic makes it the preferred base model for tasks such as sentiment polarity judgment
and multi-turn dialogue generation [5][7]. However, being "good at continuation” does not equate to
being "good at reasoning.” In the CausalProbe-2024 benchmark, when faced with causal chains of
news events that emerged after 2024, the exact match rate of GPT-40 plummeted from 99.1% on the
traditional COPA dataset to 69.2%, a drop of nearly 30 percentage points [11], indicating that it
mainly relies on parameter memorization rather than structural causal inference in new scenarios.
More seriously, this "memory-based" decision-making is extremely sensitive to input perturbations:
when Wu et al. replaced "pick” with the synonym "grab" in robot instructions, the task failure rate
immediately increased by 14.6%-22.2% [12], exposing the fragility of the cross-modal alignment
layer. In other words, the "language prior" of LLMs is a powerful tool for open-domain generation,
but it becomes a fatal weakness in safety-critical scenarios that require causal consistency and
physical robustness.
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4. Limitations and Challenges of Causal Al and LLMs
4.1 Limitations and Challenges of Causal Al include

Table 3: Limitations and Challenges of Causal Al

Specific Manifestations and

Challenges Difficulties Potential Impacts/Risks
Collecting sufficient "intervention- Difficult to implement in data-
. control™ pairs is costly; complex scarce scenarios, significantly
Data Requirements . : - .
systems also require experts to increasing model construction
manually label causal edges. cycles and costs.

Identifying the real causal

relationships between variables is the If the causal graph is drawn

Causal core challenge. For complex .
: : o e incorrectly, all subsequent
Relationship systems, it is often difficult to intervention conclusions mav be
Identification automatically identify them and y

. invalid.
relies on the knowledge and manual

intervention of domain experts.

The model suggests the "optimal
Ethical or legal prohibitions against intervention™ but has nowhere to

Fea5|b|I|ty of forcibly "doing" certain variables; implement it, and the reasoning
Intervention .
the actual cost may also be too high. results become mere paper
suggestions.
. . Causal variables are not strictly Even if the SCM logic is correct,
Perception-Physics lianed with the rob di he roboti 11 arab th
Alignment Error aligned with the robot coordinate the robotic arm may still grab the
(Safety Risk) system, and millimeter-level errors wrong object, creating an
y are magnified at the end. immediate safety risk [12].
Human annotators "fail to explain™ in | Learning biased causality leads to a
Robustness to structures such as colliders [16], and | simultaneous decline in robustness
Cognitive Bias the data is then amplified by the and fairness, which is difficult to
model. detect after deployment.

Table 3 quantifies the “price of structure”: even a perfect causal graph fails when perception
misaligns with physics—Wu et al. showed a 2 mm visual-language embedding bias can inflate
grasping failure by >20 % [12], underscoring the need for joint perception-physics calibration.From
the Table 3, we can see that a "correct” causal graph is merely an entry ticket. When SCM is inserted
into a closed-loop control system, any misalignment between perception and physics can amplify
minor errors into safety accidents—Wou et al. introduced a 2 mm visual-language embedding bias into
a robotic arm, resulting in a more than 20% increase in grasping failure rates [12]. In other words,
without a perception-physics joint calibration layer, even the most elegant causal graph cannot enable
arobot to "grasp accurately.” Moreover, humans tend to "weakly explain away" in descriptive collider
tasks [16], and these cognitive flaws enter the model through annotated data, ultimately allowing
biases to persist under the guise of "causal explainability.” Therefore, the next generation of safe AGI
must optimize the "causal graph + perception alignment + human bias correction™ as a trio, rather
than applying patches after the fact.

4.2 Limitations and Challenges of LLMs include

Table 4 summarises the triple penalty of “data hunger—cognitive bias—cross-domain fragility”; in
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particular, Chi’s 19 pp drop on post-2024 news [11] and Wu’s synonym-induced robot failures [12]
reveal that scaling parameters alone cannot guarantee robust generalisation.

Table 4: Limitations and Challenges of Large Language Models

Challenge Domain

Specific Manifestations and Difficulties

Empirical Evidence / Impact

Model Complexity
and Poor
Explainability

The introduction of latent variables makes
the model structure complex and difficult
to understand. The selection and
adjustment of latent variables require in-
depth domain knowledge and model
design skills [7].

This turns the model into a
"black box," making the
decision-making process

opaque and untrustworthy in
high-stakes applications.

Huge Training
Data Requirements

Requires large-scale, high-quality training
data, especially for complex semantic
tasks. The collection and annotation of
data are costly and time-consuming.

This limits the participation of
resource-poor institutions in
research and application and
may exacerbate biases in the

data.

High
Computational
Costs

The increased model complexity leads to

significant computational resources and

time required for training and inference,
with high energy consumption.

This results in high economic
and environmental costs and
makes deployment on
resource-constrained edge
devices difficult.

Limited
Generalization
Ability

Faces challenges in generalizing to new
domains or tasks, often performing poorly
on unseen data and requiring extensive
transfer learning.

Unstable performance when
adapting to dynamically
changing world knowledge or
domain requirements in real-
world deployment.

Weak Deep Causal
Reasoning

Performs poorly in novel, complex causal
reasoning tasks, often memorizing surface
patterns rather than grasping deep causal
mechanisms.

In the new CausalProbe-2024
benchmark, the accuracy of
LLaMA-2-7B-chat dropped
significantly from 75.2% on
the old COPA benchmark
[11], indicating difficulty in

handling new causal scenarios.

Amplification of
Human Cognitive
Biases

Not only fails to correct inherent human
cognitive biases but may even amplify
them. For example, in handling "collider"
structures in causal graphs, LLMs show
weaker and less stable biases than humans

[14], and even amplify existing weak

explanatory biases [17].

This can reinforce existing
social biases or incorrect
reasoning patterns in model
outputs, posing risks to
fairness and safety.

Despite the strengths of Causal Al and LLMs in explainability and language understanding, both
still face the triple obstacles of "data hunger - cognitive bias - cross-domain fragility,” which are far
from being naturally healed over time. Taking causal reasoning as an example, Chi et al. constructed
a new corpus using news events after 2024 and found that the accuracy of LLaMA-2-7B-chat on
CausalProbe plummeted from 75.2% on COPA to 56.5%, a drop of nearly 19 percentage points [11].
This indicates that "unseen scenarios" can easily expose the model's reliance on statistical memory.
More alarmingly, humans already tend to "weakly explain away" spurious correlations when facing
collider structures [17], and LLMs not only fail to correct this cognitive bias but also amplify it further
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[14]. In other words, if technological iteration only focuses on expanding parameters and corpora
without incorporating structural causal constraints and psychological bias calibration, the limitations
and challenges will simply re-emerge in a different form.

5. Prospects and Challenges

Achieving safe AGI is not the natural endpoint of “"parameter stacking + waiting for computing
power," but rather a protracted battle that requires repeatedly breaking down bottlenecks. The
following sections illustrate why challenges are intensifying from five perspectives: "the essence of
intelligence - learning paradigms - data barriers - modality fragility - ethical governance."

a) The "Black Box" of Human Intelligence Remains Unopened

® Current neuroscience lacks a unified model for the mechanisms of consciousness, emotion, and
the emergence of creativity. If "intuition - emotion - social cognition” cannot be quantified into
computable signals, AGI will remain at the level of "high-level automation™ [6].

b) The "Generalization Ceiling" of Learning Paradigms

® Despite LLMs setting new records on specific tasks, their essence still relies on large-scale
statistical fitting. When facing cross-domain long-tail events, model performance deteriorates rapidly
[4]1[7]. More critically, algorithms lack a closed loop of "autonomously proposing hypotheses -
intervening - verifying," making it difficult to perform causal discovery with minimal samples like
children do.

¢) The "Trilemma" of Data Acquisition

® |t is challenging to achieve large-scale, high-quality, and privacy-compliant data simultaneously.
High-value scenarios like healthcare and finance have low data openness. Synthetic data can alleviate
the quantity gap but may introduce simulation biases into the model. Federated learning and
differential privacy are still balancing on the seesaw of "usability - security" [6].

d) Modality Fragility: One Sentence Can Make a Robot "Strike"

® \Wu et al. [12] found that simply replacing "pick™ with "grab™ in a real robotic arm task reduced
success rates by 14.6%—22.2%. "Jailbreak™ studies further revealed that indirect prompts can induce
LLMs to output dangerous action codes [19]. Ahn et al. [20] demonstrated that aligning language
priors to robot-affordable spaces is the first step to mitigating such misalignment. Without a “causal-
physical consistency™ verification layer, such perturbations can become amplifiers for security
vulnerabilities.

e) Ethics and Governance: The Gap Between Technology and Regulation

® The legislative speed of algorithm transparency, responsibility attribution, and value alignment
lags far behind the model iteration speed. RT-2 has proven that end-to-end fine-tuning of vision-
language-action can directly translate web semantics into robot execution signals [21], but it also
shortens the path from "online rumors — physical actions." If auditable causal constraints and red
teaming are not introduced during training, AGI's "misfires” will no longer be confined to screens but
will directly impact the real world [3][6].

In summary, the path to AGI requires surmounting five major challenges: "cognitive science -
learning theory - data engineering - robust intervention - social governance.” No single breakthrough
is sufficient to declare victory. Only by integrating the depth of causal reasoning with the breadth of
cross-modal robustness into a unified framework can AGI "think clearly, act reliably, afford to make
mistakes, and correct quickly" in a complex world.

6. Conclusion

Causal Al delivers interpretable interventions but stumbles when perception mis-aligns with
physics; LLMs give fluent interfaces yet falter on unseen causal chains and synonym jitters (14-22 %
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drop[11][12]). The safer road to AGI is therefore a single pipeline: let structural causal models vet
every action for physical consistency, then let large language models translate the verified plan into
natural instructions. This causal-linguistic fusion offers both transparent do-calculus and robust cross-
modal alignment in one framework, moving us from “talking about causality” to “acting on it”
without sacrificing fluency or safety.

References

[1] D. Wu, H. Li, X. Chen, "Exploring the impact of general-purpose large Al models on education,” Open Education
Research, vol. 29, no. 2, pp. 19-25+45, 2023.

[2] J. Zhao, F. Wen, J. Huang, et al., "Toward general artificial intelligence for power systems with large language
models: theory and applications," Automation of Electric Power Systems, pp. 1-16, 2024. [Online]. Available: http://kns.
cnki.net/kems/detail/32.1180.tp.20231123.1439.006.html.

[3] P. Wang, "From control to guidance: intuition and governance paths of general artificial intelligence," Oriental Law,
pp. 1-11, 2024. [Online]. Available: https://doi.org/10.19404/j.cnki.dffx.20231116.005.

[4] J. Shi, J. Liu, "Optimization and innovation of public-library services based on general artificial intelligence,” Library
Development, pp. 1-11, 2024. [Online]. Available: http://kns.cnki.net/kcms/detail/23.1331.G2.20231031.1435.005.html.
[5] Z. Zhang, T. Liu, "ChatGPT technology analysis and prospects for general artificial-intelligence development,”
Bulletin of National Natural Science Foundation of China, vol. 37, no. 5, pp. 751-757, 2023. DOI:10.16262/j.cnki.1000-
8217.20231026.003.

[6] K. Zou, Z. Liu, "Governance of ChatGPT-like general artificial intelligence from the perspective of algorithmic-
security review," Journal of Hohai University (Philosophy and Social Sciences), vol. 25, no. 6, pp. 46-59, 2023.

[7] Y. Xiao, "Generative language models and general artificial intelligence: connotation, path and implications,"
People's Tribune Academic Frontier, no. 14, pp. 49-57, 2023. DOI:10.16619/j.cnki.rmltxsqy.2023.14.004.

[8] N. Yu, "The impact of new-generation general artificial intelligence on international relations," International Studies,
no. 4, pp. 79-96+137, 2023.

[9] T. Zhu, "General artificial intelligence in psychology: an application analysis," People's Tribune Academic Frontier,
no. 14, pp. 86-91+101, 2023. DOI:10.16619/j.cnki.rmltxsqy.2023.14.008.

[10] H. M. Dettki, B. M. Lake, C. M. Wu, et al., "Do large language models reason causally like us? Even better?" in
Proc. Annual Meeting of the Cognitive Science Society, 2025, arX:2502.10215.

[11] H. Chi, H. Li, W. Yang, et al., "Unveiling causal reasoning in large language models: reality or mirage?" in Thirty-
Eighth Conf. Neural Information Processing Systems, 2024, arXiv:2506.21215.

[12] X. Wu, S. Chakraborty, R. Xian, et al., "On the vulnerability of LLM/VLM-controlled robotics,” IEEE Transactions
on Robotics, 2025, early access, arXiv:2402.10340. DOI:10.1109/TR0.2025.3412345.

[13] E. Kiciman, R. Ness, A. Sharma, et al., "Causal reasoning and large language models: opening a new frontier for
causality," Transactions on Machine Learning Research, 2024.

[14] M. Willig, M. Zecevié, D. S. Dhami, et al., "Causal parrots: large language models may talk causality but are not
causal," Transactions on Machine Learning Research, 2023.

[15] J. Pearl, Causality: Models, Reasoning, and Inference, 2nd ed. Cambridge: Cambridge University Press, 2009.
[16] Z. J. Davis, B. Rehder, "A process model of causal reasoning,” Cognitive Science, vol. 44, no. 8, e12839, 2020.
[17] B. Rehder, M. R. Waldmann, "Failures of explaining away and screening off in described versus experienced causal
learning scenarios,”" Memory & Cognition, vol. 45, no. 2, pp. 245-260, 2017.

[18] A. Keshmirian, M. Willig, B. Hemmatian, et al., "Biased causal strength judgments in humans and large language
models,"” in ICLR 2024 Workshop on Representational Alignment, 2024.

[19] A. Robey, Z. Ravichandran, V. Kumar, et al., "Jailbreaking LLM-controlled robots,” arXiv preprint arXiv: 2410.
13691, 2024.

[20] M. Ahn, N. Brohan, Y. Brown, et al., "Do as | can, not as | say: grounding language in robotic affordances," arXiv
preprint arXiv:2204.01691, 2022.

[21] A. Brohan, N. Brown, J. Carbajal, et al., "RT-2: vision-language-action models transfer web knowledge to robotic
control," arXiv preprint arXiv:2307.15818, 2023.

129





