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Abstract: Causal AI and Large Scale Language Modeling (LLM) are the two main 

directions of current AI research, focusing on causal reasoning and natural language 

processing, respectively. This article attempts to answer a key question: Which is more 

promising on the path towards safe general artificial intelligence (AGI), casual AI or LLM? 

Research shows that although both have their own advantages, relying solely on either path 

has significant limitations. Therefore, this article proposes a fusion path that combines the 

causal inference ability of Causal AI with the language understanding and task execution 

advantages of LLM, which may provide a more feasible solution for the implementation of 

AGI. Ultimately, the comprehensive method proposed in this article may bring new insights 

and directions for the development of artificial general intelligence. 

1. Introduction 

1.1 The Concept and Value of AGI 

Artificial General Intelligence (AGI) is not merely “more powerful narrow AI.” It must 

autonomously abstract rules and transfer them to tasks it has never seen—this “cross-domain 

flexibility” is the core hallmark of human-level cognition [2]. Once realized, its impact will erupt 

outside the lab first: AGI in hospitals can integrate imaging, genomics and medical history in real 

time to deliver personalized diagnosis and treatment [1]; at climate-negotiation tables it can run high-

fidelity simulations of the “carbon-price → industry → employment” chain at once, pressing the 

“policy-preview” button [8][9]. Of course, the flip side is immediately visible: when the system 

begins to rewrite itself, how should responsibility be assigned? If its decisions eliminate certain jobs, 

how can society redistribute value? These questions [3] remind us that AGI governance must iterate 

in lock-step with algorithms, not as an after-the-fact patch. 

1.2 Comparison of Causal AI and LLM in the Realization of AGI 

"Who is closer to AGI?" Before answering this question, let's first take a look at an experimental 

curve: when the questions were quietly switched to news events after 2024, the accuracy of GPT-4o 

in causal question answering dropped from 99.1% to 69.2%, a decline of nearly 30 percentage points 
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[11]. This gap suggests that the "understanding" of large models is more of a compressed playback 

of training corpora, rather than reverse engineering of causal mechanisms. 

Recent reviews have used sharper wording to point out that LLMs hardly "explain away" spurious 

correlations in the classic collider structure; at best, they are "giant parrots that can recite causal 

phrases" [13][14]. In contrast, Causal AI explicitly writes the intervention relationships between 

variables into structural equations, thereby allowing humans to "turn knobs" to verify hypotheses 

outside the Turing Test [15]. 

However, language models remain an indispensable "universal interface." They can parse "Please 

place the red cylinder on the north side of the wooden box" into executable code in milliseconds. The 

danger lies in the fact that Wu et al. simply replaced the verb "pick" with "grab," causing the robot's 

success rate to plummet by 14.6%–22.2% [12]—a synonymous rewrite can shatter cross-modal 

alignment. If AGI cannot be immune to such "micro-seismic disturbances," its ticket to the operating 

table or the highway should rightfully be temporarily withheld. 

Therefore, instead of choosing between Causal AI and LLMs, it would be better to regard the 

former as a "causal verification layer" and the latter as a "semantic interface layer": let SCM first 

issue a "certification of intervenability" for the action plan, and then hand it over to LLM to complete 

the final natural language interaction. The stitching of these two paths may be the shortest plank to a 

safe AGI— at least, more reliable than waiting for a single paradigm to revolutionize itself [4].  

With the rise and progress of wireless sensor network research, how to locate and track moving 

targets using wireless sensor networks has become an important research topic of target tracking 

[5][6]. The nodes consisting of wireless sensor network has the characteristics of small volume, low 

price and low energy consumption. Nodes can transmit information through wireless communication 

and ad hoc network. These features make the moving target tracking system based on wireless sensor 

network have obvious advantages than traditional moving target tracking system [7][8]. Although the 

moving target tracking based on wireless sensor network has many advantages, the nature of the 

wireless sensor network is different from the ordinary network. The wireless sensor network itself 

has a large number of nodes, nodes are prone to failure, energy is constrained and transmission is 

unreliable. The detection ability, computing ability, storage ability and so on of nodes consisting of 

wireless sensor network are seriously limited. All of these put forward challenge for the design and 

implementation of moving target tracking system based on wireless sensor network.  

2. Characteristics and Advantages of Causal AI 

Causal AI is an artificial intelligence system based on causal relationships. It relies on 

understanding and modeling the causal relationships between events, thereby enabling prediction and 

intervention. Recent systematic reviews have pointed out that large models are merely "causal 

parrots," while structural causal models can truly open up new frontiers in causal inference [13]. In 

Table 1, the advantages of Causal AI are summarised. Table 1 reveals that Causal AI obtains its edge 

from explicit edges: every arc in the SCM corresponds to a testable intervention, allowing doctors or 

policy-makers to read off “β = 0.3” as a 30 % drop in readmission risk per 1 mmol/L glucose reduction 

without post-hoc visualisation [15]. 

Table 1: Advantages of Causal AI 

Core Features Advantages Technical Advantages Application Scenarios 

High Precision 

It performs reasoning and 

prediction by identifying 

and utilizing real causal 

relationships, rather than 

merely relying on 

Compared to machine learning 

methods that only fit data, its 

predictions are based on causal 

mechanisms, resulting in higher 

accuracy. 

In medical diagnosis, 

Causal AI uses do-

calculus to quantify the 

counterfactual risk of 

"giving medication 
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statistical patterns. It has 

an advantage in dealing 

with complex and 

uncertain problems. 

before examination," 

rather than just reporting 

correlation strength 

[15]. 

Strong 

Explainability 

It can model causal 

relationships, thereby 

explaining the reasons 

and basis for prediction 

results and assisting 

human decision-making. 

The model output is transparent, 

unlike the "black box" decision-

making of LLMs, which is 

crucial in decision support and 

risk assessment. 

The weight of each edge 

represents the 

intervention effect. 

Doctors can directly 

read that "β = 0.3" 

means that for every 1 

mmol/L decrease in 

blood sugar, the 

probability of 

readmission decreases 

by 30%, without the 

need for post hoc 

visualization [15]. 

Intervention 

Capability 

It not only predicts but 

also has the ability to 

intervene, allowing it to 

simulate or guide actual 

actions to change the 

system's state and achieve 

optimization. 

LLMs are usually limited to 

prediction or content generation, 

while Causal AI can answer 

intervention questions like 

"What should be done to 

achieve a certain goal?" 

G²-Reasoner grafts 

external knowledge 

retrieval onto LLMs and 

achieves an additional 

2.3–4.1 percentage 

points on the new 

CausalProbe-Hard 

scenario [11]. 

Meanwhile, 

Keshmirian's 

experiment shows that 

LLMs' judgments of 

causal strength are more 

extreme than humans', 

indirectly verifying the 

necessity of SCM 

posterior [18]. 

Broad 

Applicability 

The framework based on 

causal relationships is 

universal, applicable to 

both natural and social 

sciences. 

The modeling framework is 

decoupled from the specific 

domain's surface features, 

resulting in good transferability. 

Medicine, finance, 

economics, political 

science, intelligent 

transportation 

Strong 

Robustness 

With explicit structural 

priors, it is insensitive to 

semantic perturbations in 

inputs and maintains the 

stability and 

intervenability of outputs 

under disturbances. 

In safety-critical scenarios, 

LLM/VLM is susceptible to 

"semantic equivalence-syntactic 

perturbation," with task success 

rates potentially dropping by 

more than 20% [12], while 

Causal AI remains stable. 

Safety-critical AGI 

scenarios such as robot 

control and autonomous 

driving 

Overall, compared to parametric causal models, LLMs perform weakly and unstably in 

"explaining away" effects in collider structures [10]. In safety-critical scenarios such as robot control, 

LLM/VLM is easily triggered by "semantic equivalence-syntactic perturbation," resulting in a task 

success rate drop of over 20% [12]. Causal AI, with its explicit structural priors, maintains 

intervenability and explainability under similar disturbances, providing a more robust route to safe 

AGI. 
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3. Characteristics and Advantages of LLMs 

In Table 2, the characteristics and advantages of large language models are summarised. Table 2 

shows how LLMs compensate for data sparsity via latent representations—rare trigrams still receive 

plausible continuations—but also flags the Achilles heel: synonym substitution (pick → grab) can 

raise robot failure rates by 14.6 %–22.2 % [12], exposing the fragility of cross-modal alignment. 

Table 2: Advantages of Large Language Models 

Core Features Advantages 
Typical Application 

Scenarios 

Handling Sparse 

Data 

By introducing latent variables to reduce the 

number of parameters, it can more 

effectively handle words that appear 

infrequently in the training data, overcoming 

the issue of data sparsity. 

Large-scale language 

modeling, handling rare 

words 

Resolving 

Ambiguity 

Latent variables can correspond to different 

semantic interpretations, enabling the model 

to understand the correct meaning of 

polysemous words based on context. 

Word sense disambiguation, 

semantic understanding 

Language 

Generation 

Capable of generating new language 

sequences, rather than just predicting the 

next word. 

Natural language generation, 

dialogue systems, text 

summarization, creative 

writing 

Strong 

Explainability 

Latent variables correspond to different 

semantic or grammatical concepts, allowing 

the model to be analyzed for interpretability 

to some extent and understand its decision-

making basis. 

Sentence classification, 

sentiment analysis, 

explainable AI 

Flexible 

Modeling 

By introducing different latent variables, the 

model architecture is highly flexible and can 

be customized and adjusted according to 

specific tasks and scenarios [7]. 

Adaptation to various natural 

language processing tasks 

LLMs, through pretraining latent variables on large-scale corpora, are naturally adept at 

compensating for statistical voids caused by data sparsity: even when a trigram appears only once in 

the training set, the model can still provide reasonable continuation based on contextual embeddings. 

This characteristic makes it the preferred base model for tasks such as sentiment polarity judgment 

and multi-turn dialogue generation [5][7]. However, being "good at continuation" does not equate to 

being "good at reasoning." In the CausalProbe-2024 benchmark, when faced with causal chains of 

news events that emerged after 2024, the exact match rate of GPT-4o plummeted from 99.1% on the 

traditional COPA dataset to 69.2%, a drop of nearly 30 percentage points [11], indicating that it 

mainly relies on parameter memorization rather than structural causal inference in new scenarios. 

More seriously, this "memory-based" decision-making is extremely sensitive to input perturbations: 

when Wu et al. replaced "pick" with the synonym "grab" in robot instructions, the task failure rate 

immediately increased by 14.6%–22.2% [12], exposing the fragility of the cross-modal alignment 

layer. In other words, the "language prior" of LLMs is a powerful tool for open-domain generation, 

but it becomes a fatal weakness in safety-critical scenarios that require causal consistency and 

physical robustness. 
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4. Limitations and Challenges of Causal AI and LLMs 

4.1 Limitations and Challenges of Causal AI include 

Table 3: Limitations and Challenges of Causal AI 

Challenges 
Specific Manifestations and 

Difficulties 
Potential Impacts/Risks 

Data Requirements 

Collecting sufficient "intervention-

control" pairs is costly; complex 

systems also require experts to 

manually label causal edges. 

Difficult to implement in data-

scarce scenarios, significantly 

increasing model construction 

cycles and costs. 

Causal 

Relationship 

Identification 

Identifying the real causal 

relationships between variables is the 

core challenge. For complex 

systems, it is often difficult to 

automatically identify them and 

relies on the knowledge and manual 

intervention of domain experts. 

If the causal graph is drawn 

incorrectly, all subsequent 

intervention conclusions may be 

invalid. 

Feasibility of 

Intervention 

Ethical or legal prohibitions against 

forcibly "doing" certain variables; 

the actual cost may also be too high. 

The model suggests the "optimal 

intervention" but has nowhere to 

implement it, and the reasoning 

results become mere paper 

suggestions. 

Perception-Physics 

Alignment Error 

(Safety Risk) 

Causal variables are not strictly 

aligned with the robot coordinate 

system, and millimeter-level errors 

are magnified at the end. 

Even if the SCM logic is correct, 

the robotic arm may still grab the 

wrong object, creating an 

immediate safety risk [12]. 

Robustness to 

Cognitive Bias 

Human annotators "fail to explain" in 

structures such as colliders [16], and 

the data is then amplified by the 

model. 

Learning biased causality leads to a 

simultaneous decline in robustness 

and fairness, which is difficult to 

detect after deployment. 

Table 3 quantifies the “price of structure”: even a perfect causal graph fails when perception 

misaligns with physics—Wu et al. showed a 2 mm visual-language embedding bias can inflate 

grasping failure by >20 % [12], underscoring the need for joint perception-physics calibration.From 

the Table 3, we can see that a "correct" causal graph is merely an entry ticket. When SCM is inserted 

into a closed-loop control system, any misalignment between perception and physics can amplify 

minor errors into safety accidents—Wu et al. introduced a 2 mm visual-language embedding bias into 

a robotic arm, resulting in a more than 20% increase in grasping failure rates [12]. In other words, 

without a perception-physics joint calibration layer, even the most elegant causal graph cannot enable 

a robot to "grasp accurately." Moreover, humans tend to "weakly explain away" in descriptive collider 

tasks [16], and these cognitive flaws enter the model through annotated data, ultimately allowing 

biases to persist under the guise of "causal explainability." Therefore, the next generation of safe AGI 

must optimize the "causal graph + perception alignment + human bias correction" as a trio, rather 

than applying patches after the fact. 

4.2 Limitations and Challenges of LLMs include 

Table 4 summarises the triple penalty of “data hunger–cognitive bias–cross-domain fragility”; in 
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particular, Chi’s 19 pp drop on post-2024 news [11] and Wu’s synonym-induced robot failures [12] 

reveal that scaling parameters alone cannot guarantee robust generalisation. 

Table 4: Limitations and Challenges of Large Language Models 

Challenge Domain Specific Manifestations and Difficulties Empirical Evidence / Impact 

Model Complexity 

and Poor 

Explainability 

The introduction of latent variables makes 

the model structure complex and difficult 

to understand. The selection and 

adjustment of latent variables require in-

depth domain knowledge and model 

design skills [7]. 

This turns the model into a 

"black box," making the 

decision-making process 

opaque and untrustworthy in 

high-stakes applications. 

Huge Training 

Data Requirements 

Requires large-scale, high-quality training 

data, especially for complex semantic 

tasks. The collection and annotation of 

data are costly and time-consuming. 

This limits the participation of 

resource-poor institutions in 

research and application and 

may exacerbate biases in the 

data. 

High 

Computational 

Costs 

The increased model complexity leads to 

significant computational resources and 

time required for training and inference, 

with high energy consumption. 

This results in high economic 

and environmental costs and 

makes deployment on 

resource-constrained edge 

devices difficult. 

Limited 

Generalization 

Ability 

Faces challenges in generalizing to new 

domains or tasks, often performing poorly 

on unseen data and requiring extensive 

transfer learning. 

Unstable performance when 

adapting to dynamically 

changing world knowledge or 

domain requirements in real-

world deployment. 

Weak Deep Causal 

Reasoning 

Performs poorly in novel, complex causal 

reasoning tasks, often memorizing surface 

patterns rather than grasping deep causal 

mechanisms. 

In the new CausalProbe-2024 

benchmark, the accuracy of 

LLaMA-2-7B-chat dropped 

significantly from 75.2% on 

the old COPA benchmark 

[11], indicating difficulty in 

handling new causal scenarios. 

Amplification of 

Human Cognitive 

Biases 

Not only fails to correct inherent human 

cognitive biases but may even amplify 

them. For example, in handling "collider" 

structures in causal graphs, LLMs show 

weaker and less stable biases than humans 

[14], and even amplify existing weak 

explanatory biases [17]. 

This can reinforce existing 

social biases or incorrect 

reasoning patterns in model 

outputs, posing risks to 

fairness and safety. 

Despite the strengths of Causal AI and LLMs in explainability and language understanding, both 

still face the triple obstacles of "data hunger - cognitive bias - cross-domain fragility," which are far 

from being naturally healed over time. Taking causal reasoning as an example, Chi et al. constructed 

a new corpus using news events after 2024 and found that the accuracy of LLaMA-2-7B-chat on 

CausalProbe plummeted from 75.2% on COPA to 56.5%, a drop of nearly 19 percentage points [11]. 

This indicates that "unseen scenarios" can easily expose the model's reliance on statistical memory. 

More alarmingly, humans already tend to "weakly explain away" spurious correlations when facing 

collider structures [17], and LLMs not only fail to correct this cognitive bias but also amplify it further 
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[14]. In other words, if technological iteration only focuses on expanding parameters and corpora 

without incorporating structural causal constraints and psychological bias calibration, the limitations 

and challenges will simply re-emerge in a different form. 

5. Prospects and Challenges 

Achieving safe AGI is not the natural endpoint of "parameter stacking + waiting for computing 

power," but rather a protracted battle that requires repeatedly breaking down bottlenecks. The 

following sections illustrate why challenges are intensifying from five perspectives: "the essence of 

intelligence - learning paradigms - data barriers - modality fragility - ethical governance." 

a) The "Black Box" of Human Intelligence Remains Unopened 

 Current neuroscience lacks a unified model for the mechanisms of consciousness, emotion, and 

the emergence of creativity. If "intuition - emotion - social cognition" cannot be quantified into 

computable signals, AGI will remain at the level of "high-level automation" [6]. 

b) The "Generalization Ceiling" of Learning Paradigms 

 Despite LLMs setting new records on specific tasks, their essence still relies on large-scale 

statistical fitting. When facing cross-domain long-tail events, model performance deteriorates rapidly 

[4][7]. More critically, algorithms lack a closed loop of "autonomously proposing hypotheses - 

intervening - verifying," making it difficult to perform causal discovery with minimal samples like 

children do. 

c) The "Trilemma" of Data Acquisition 

 It is challenging to achieve large-scale, high-quality, and privacy-compliant data simultaneously. 

High-value scenarios like healthcare and finance have low data openness. Synthetic data can alleviate 

the quantity gap but may introduce simulation biases into the model. Federated learning and 

differential privacy are still balancing on the seesaw of "usability - security" [6]. 

d) Modality Fragility: One Sentence Can Make a Robot "Strike" 

 Wu et al. [12] found that simply replacing "pick" with "grab" in a real robotic arm task reduced 

success rates by 14.6%–22.2%. "Jailbreak" studies further revealed that indirect prompts can induce 

LLMs to output dangerous action codes [19]. Ahn et al. [20] demonstrated that aligning language 

priors to robot-affordable spaces is the first step to mitigating such misalignment. Without a "causal-

physical consistency" verification layer, such perturbations can become amplifiers for security 

vulnerabilities. 

e) Ethics and Governance: The Gap Between Technology and Regulation 

 The legislative speed of algorithm transparency, responsibility attribution, and value alignment 

lags far behind the model iteration speed. RT-2 has proven that end-to-end fine-tuning of vision-

language-action can directly translate web semantics into robot execution signals [21], but it also 

shortens the path from "online rumors → physical actions." If auditable causal constraints and red 

teaming are not introduced during training, AGI's "misfires" will no longer be confined to screens but 

will directly impact the real world [3][6]. 

In summary, the path to AGI requires surmounting five major challenges: "cognitive science - 

learning theory - data engineering - robust intervention - social governance." No single breakthrough 

is sufficient to declare victory. Only by integrating the depth of causal reasoning with the breadth of 

cross-modal robustness into a unified framework can AGI "think clearly, act reliably, afford to make 

mistakes, and correct quickly" in a complex world. 

6. Conclusion 

Causal AI delivers interpretable interventions but stumbles when perception mis-aligns with 

physics; LLMs give fluent interfaces yet falter on unseen causal chains and synonym jitters (14–22 % 
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drop[11][12]). The safer road to AGI is therefore a single pipeline: let structural causal models vet 

every action for physical consistency, then let large language models translate the verified plan into 

natural instructions. This causal-linguistic fusion offers both transparent do-calculus and robust cross-

modal alignment in one framework, moving us from “talking about causality” to “acting on it” 

without sacrificing fluency or safety. 

References 

[1] D. Wu, H. Li, X. Chen, "Exploring the impact of general-purpose large AI models on education," Open Education 

Research, vol. 29, no. 2, pp. 19-25+45, 2023. 

[2] J. Zhao, F. Wen, J. Huang, et al., "Toward general artificial intelligence for power systems with large language 

models: theory and applications," Automation of Electric Power Systems, pp. 1-16, 2024. [Online]. Available: http://kns. 

cnki.net/kcms/detail/32.1180.tp.20231123.1439.006.html. 

[3] P. Wang, "From control to guidance: intuition and governance paths of general artificial intelligence," Oriental Law, 

pp. 1-11, 2024. [Online]. Available: https://doi.org/10.19404/j.cnki.dffx.20231116.005. 

[4] J. Shi, J. Liu, "Optimization and innovation of public-library services based on general artificial intelligence," Library 

Development, pp. 1-11, 2024. [Online]. Available: http://kns.cnki.net/kcms/detail/23.1331.G2.20231031.1435.005.html. 

[5] Z. Zhang, T. Liu, "ChatGPT technology analysis and prospects for general artificial-intelligence development," 

Bulletin of National Natural Science Foundation of China, vol. 37, no. 5, pp. 751-757, 2023. DOI:10.16262/j.cnki.1000-

8217.20231026.003. 

[6] K. Zou, Z. Liu, "Governance of ChatGPT-like general artificial intelligence from the perspective of algorithmic-

security review," Journal of Hohai University (Philosophy and Social Sciences), vol. 25, no. 6, pp. 46-59, 2023. 

[7] Y. Xiao, "Generative language models and general artificial intelligence: connotation, path and implications," 

People's Tribune Academic Frontier, no. 14, pp. 49-57, 2023. DOI:10.16619/j.cnki.rmltxsqy.2023.14.004. 

[8] N. Yu, "The impact of new-generation general artificial intelligence on international relations," International Studies, 

no. 4, pp. 79-96+137, 2023. 

[9] T. Zhu, "General artificial intelligence in psychology: an application analysis," People's Tribune Academic Frontier, 

no. 14, pp. 86-91+101, 2023. DOI:10.16619/j.cnki.rmltxsqy.2023.14.008. 

[10] H. M. Dettki, B. M. Lake, C. M. Wu, et al., "Do large language models reason causally like us? Even better?" in 

Proc. Annual Meeting of the Cognitive Science Society, 2025, arX:2502.10215. 

[11] H. Chi, H. Li, W. Yang, et al., "Unveiling causal reasoning in large language models: reality or mirage?" in Thirty-

Eighth Conf. Neural Information Processing Systems, 2024, arXiv:2506.21215. 

[12] X. Wu, S. Chakraborty, R. Xian, et al., "On the vulnerability of LLM/VLM-controlled robotics," IEEE Transactions 

on Robotics, 2025, early access, arXiv:2402.10340. DOI:10.1109/TRO.2025.3412345. 

[13] E. Kıcıman, R. Ness, A. Sharma, et al., "Causal reasoning and large language models: opening a new frontier for 

causality," Transactions on Machine Learning Research, 2024. 

[14] M. Willig, M. Zečević, D. S. Dhami, et al., "Causal parrots: large language models may talk causality but are not 

causal," Transactions on Machine Learning Research, 2023. 

[15] J. Pearl, Causality: Models, Reasoning, and Inference, 2nd ed. Cambridge: Cambridge University Press, 2009. 

[16] Z. J. Davis, B. Rehder, "A process model of causal reasoning," Cognitive Science, vol. 44, no. 8, e12839, 2020. 

[17] B. Rehder, M. R. Waldmann, "Failures of explaining away and screening off in described versus experienced causal 

learning scenarios," Memory & Cognition, vol. 45, no. 2, pp. 245-260, 2017. 

[18] A. Keshmirian, M. Willig, B. Hemmatian, et al., "Biased causal strength judgments in humans and large language 

models," in ICLR 2024 Workshop on Representational Alignment, 2024. 

[19] A. Robey, Z. Ravichandran, V. Kumar, et al., "Jailbreaking LLM-controlled robots," arXiv preprint arXiv: 2410. 

13691, 2024. 

[20] M. Ahn, N. Brohan, Y. Brown, et al., "Do as I can, not as I say: grounding language in robotic affordances," arXiv 

preprint arXiv:2204.01691, 2022. 

[21] A. Brohan, N. Brown, J. Carbajal, et al., "RT-2: vision-language-action models transfer web knowledge to robotic 

control," arXiv preprint arXiv:2307.15818, 2023. 

129




