Journal of Artificial Intelligence Practice (2025) DOI: 10.23977/jaip.2025.080316
Clausius Scientific Press, Canada ISSN 2371-8412 Vol. 8 Num. 3

Research on Robotic Arm Path Planning Algorithm
Based on Bidirectional Target-Biased APF-Informed-
RRT* Algorithm

Zhai Linlint2* Fu Jiajie?

IShanghai Technical Institute of Electronics & Information, Wahong Highway, Shanghai, China
azhaill1992@163.com
*Corresponding author

Keywords: Robotic Arm; Path planning algorithm; Bidirectional target bias; Adaptive step
size; Artificial Potential Field (APF); B-spline smoothing

Abstract: Aiming at the problems of high search randomness, poor target bias, and low path
quality in traditional robotic arm path planning algorithms, a Bidirectional Target-Biased
APF-Informed-RRT* (BTB-APF-Informed-RRT*) algorithm is proposed. Firstly, a
probabilistically adaptive target bias strategy is introduced based on the bidirectional
Informed-RRT* to reduce the randomness of the original bidirectional RRT* search and
improve sampling efficiency. Secondly, the Artificial Potential Field (APF) method is
integrated into the path expansion process of the bidirectional search trees to reduce the
number of algorithm iterations. Simultaneously, during the path growth phase, an adaptive
step size growth strategy is adopted, which dynamically adjusts the step size according to
the expansion trend of the search tree to avoid local optima and shorten the path search time
until an initial path is generated. Finally, redundant nodes in the generated path are
removed using the triangle inequality principle, and the path is smoothed using cubic B-
spline curves to obtain the optimal planned path. Simulation comparisons of the improved
algorithm were conducted in two-dimensional environments under three different scenarios.
The results show that the improved algorithm effectively enhances relevant performance.
Applying the improved algorithm to a physical platform further demonstrates its
effectiveness and feasibility.

1. Introduction

With the rapid development of intelligent manufacturing and automation technology, robotic
arms— as core equipment of execution units— have been widely used in complex operation
scenarios such as assembly, welding, spraying, handling, and precision measurement. Path planning
is a fundamental and key technology to ensure that robotic arms complete tasks autonomously,
safely, and efficiently. Its goal is to find a collision-free feasible motion trajectory from the start
state to the target state in a high-dimensional configuration space (C-Space) filled with obstacles,
while also meeting certain optimization indicators (e.g., shortest path, time optimality, or energy
efficiency).
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Traditional path planning algorithms, such as graph search algorithms like A* and Dijkstra
algorithms, are effective in low-dimensional discrete spaces. However, their computational
complexity increases exponentially with dimensionality, making them difficult to apply to the high-
dimensional continuous C-Space of robotic arms. The Rapidly-exploring Random Tree (RRT)
algorithm, based on random sampling, has become a research hotspot in robotic arm path planning
due to its probabilistic completeness, the absence of a need for explicit environmental model
construction, and good adaptability to high-dimensional spaces. Many scholars have proposed
improvements to it. Wu Kai [1] et al. proposed an improved RRT algorithm: to enhance sampling
guidance and search efficiency, they introduced a target-biased sampling strategy with prior
conditions and an adaptive step size strategy. Liu Yang [2] et al., addressing issues such as high
sampling randomness, low planning efficiency, and tortuous paths prone to oscillation in traditional
RRT* algorithms in complex 3D scenes, proposed an improved RRT* algorithm that integrates a
Sobol sequence sampling strategy, the artificial potential field method, and a path optimization
strategy. By proposing a low-discrepancy Sobol sequence sampling strategy, they improved the
shortcomings of repeated sampling in random sampling strategies; during the growth of the
expansion tree, they proposed a method integrating the artificial potential field to guide the
generation of new nodes, thereby enhancing path search capability and accelerating convergence
speed. Nevertheless, these algorithms still suffer from inherent drawbacks such as blind random
sampling, low search efficiency, tortuous paths, and non-optimality.

To overcome the above problems, scholars have proposed many improvement schemes. The
RRT* algorithm proposed by Karaman et al. [3] achieves asymptotic path optimality by introducing
"rewiring" and "reparenting” operations, but its convergence speed is slow. The RRT-Connect [4]
(or bidirectional RRT, Bi-RRT) algorithm proposed by Kuffner et al. grows two random trees
simultaneously from the start and goal points, and significantly improves search efficiency through
an alternating expansion strategy. The Informed-RRT* algorithm proposed by Gammell et al. [5]
limits the sampling area to an elliptical hypersphere with the start and end points as foci after
finding an initial path, thus focusing the optimization search and accelerating convergence.
Furthermore, integrating heuristic information into the RRT framework is another important
research direction. The Artificial Potential Field (APF) method [6] guides the search by simulating
the attraction of the target point and the repulsion of obstacles, and is widely combined with RRT to
enhance target orientation and local obstacle avoidance capability. However, traditional APF is
prone to falling into local minima.

Although existing research has made significant progress, current bidirectional RRT* algorithms
still face problems such as excessive sampling randomness, unsatisfactory convergence speed in
complex environments, and generated initial paths with numerous redundant nodes and poor
smoothness. Although the target bias strategy can guide the search to a certain extent, a fixed bias
probability is difficult to adapt to complex and dynamic obstacle environments.

Aiming at the above problems, this paper deeply integrates multiple strategies based on existing
research and proposes a Bidirectional Target-Biased APF-Informed-RRT* (BTB-APF-Informed-
RRT*) algorithm. This algorithm incorporates a probabilistically adaptive bias strategy in the
sampling phase to dynamically adjust sampling tendency, making sampling more targeted; in the
new node expansion phase, it deeply integrates APF with the bidirectional search process based on
the distance to obstacles, effectively guiding the trees to grow toward the goal and avoid obstacles.
Moreover, an adaptive step size mechanism based on environmental information is introduced to
enhance the algorithm’s search performance in different scenarios (e.g., narrow passages and open
areas). By incorporating a robotic arm collision detection model, the generated path is processed
with triangle inequality pruning and cubic B-spline smoothing to obtain a shorter and smoother final
path.
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2. Robotic Arm Path Planning
2.1. Robotic Arm Kinematic Modeling

An industrial robotic arm is a multi-degree-of-freedom linkage mechanism. A mathematical
model is required to establish the relationship between the coordinates of the robotic arm’s end-
effector in the world coordinate system and the joint angles. This paper takes the Lefei collaborative
robot LM3 as the research object. The CAD model of the industrial robot is shown in Figure 1(a),
and the robotic arm model established using the Denavit-Hartenberg (DH) method is shown in
Figure 1(b). The DH parameter table of the robotic arm can be obtained as shown in Table 1.

(a) Lebai Robot Model
Figure 1: Robot Model
Table 1: Robotic Arm D-H Parameter Table

(b) Robotic Arm D-H Model*

Jointi a;.1/(°) a1 /mm 0..1/(°) d;/mm
1 0 0 0 0.21583
2 1.5708 0 0 0
3 0 -0.28 0 0
4 0 -0.26 0 0.12063
5 1.5708 0 0 0.09833
6 -1.5708 0 0 0.08343

The meanings of each parameter in the table are: o, representing the torsion angle of the
connecting rod; a._, Indicate the length of the connecting rod; di represents the offset of the

connecting rod. Based on these four parameter quantities, describe the transformation matrix of the
i-th connecting rod relative to the previous connecting rod i-1 using the following equation:

cosf; -sinf;cosq; S O;sina; a;cos0;
Flp_|sing; cos6;cose; -cost;sing; a;sinb; )
1 .
0 sin a; COS @; d;
0 0 0 1

For a six-axis serial robotic arm, the homogeneous transformation matrix from the base
coordinate system to the end-effector coordinate system $ {6}*{0}T$ can be obtained by
multiplying the six transformation matrices corresponding to each joint.

JT=ITO)ITO)1T0)}TOITOT0) @)

Collision detection is essential for robotic arm path planning. The LM3 industrial robot consists
of 6 joints, and detecting each joint can determine whether the robotic arm collides with obstacles.
To simplify the model, the robotic arm links are equivalent to cylinders, and irregular obstacles are
enveloped using spheres and cuboids. Finally, the collision detection task is transformed into an
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interference intersection problem between regular geometric bodies, which improves computational
efficiency.

2.2. RRT* Algorithm

The RRT* algorithm introduces rewiring (reparenting) and neighbor connection optimization
mechanisms based on the basic RRT algorithm, achieving asymptotic optimality by continuously
optimizing path cost. Its core steps are as follows:

(1) Random Sampling: Generate a random sample within the configuration space.

(2) Finding the Nearest Neighbor Node: Identify the closest node in the existing tree relative to
the sample point.

(3) Rewiring (Reparenting): After generating a new node xnew, the algorithm does not simply
set its parent node as the nearest node xnearest. Instead, it searches for all potential parent
nodes xnear within a spherical neighborhood of xnew with radius r, calculates the cost from the
start point to xnew via each xnear, and selects the node with the minimum cost as xnew’s parent.

(4) Neighbor Connection Optimization: After rewiring the parent node, the algorithm rechecks
the xnear nodes within the neighborhood. If the cost from the start point to xnear via xnew is lower
than its original cost, the parent node of xnear is reset to xnew, and its cost is updated.

By repeatedly executing these processes, the path generated by RRT* gradually approaches the
optimal path as the number of iterations increases.

2.3. Bidirectional RRT* (B-RRT%*)

The Bidirectional RRT* algorithm introduces bidirectional search and a greedy connect
algorithm based on the RRT* algorithm. It constructs random trees at the initial and target positions
respectively, and the two trees grow toward each other until they meet— at which point the path
search stops and a feasible path is generated. The B-RRT* algorithm maintains two random trees Ta
and T simultaneously: one rooted at the start point xinit and the other at the goal point xgoal. In
each iteration, the algorithm alternately expands the two trees. After expanding one tree to obtain a
new node Xnew, it does not immediately attempt to connect the two trees; instead, it tries to connect
xnew 10 the other tree. Specifically, it finds the node Xnaer closest to Xnew in the other tree. If the
connection between Xxnew and Xnaer is collision-free and the path cost after connection is lower, a path
is successfully found. Functional diagram is shown in Figure 2.This method greatly improves
search efficiency, especially in narrow passage environments.

Figure 2: B-RRT* random trees
2.4. Artificial Potential Field (APF) Method

The Artificial Potential Field method models the robot’s motion as movement in a virtual force
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field. The target point generates an attractive potential field U att(q) to attract the robot toward it:

Uu (@) =36 (q,q,,0 ()

goal

Where ( is the gravitational gain coefficient, and d(q,qgoal) is the distance from the current point
g to the target point ggoal.
Obstacles generate a repulsive potential fieldUrep(q) to repel the robot away:

1 1 1.2
2 N (g0 do <
Urep(q): 2" ( d (a gy do ), dlg, qobs) =dy 4)

0, d (q,q,,) >d

Where 1 is the repulsive gain coefficient, d(q,qobs) is the distance from the current point to the
obstacle, and dO is the distance affected by the obstacle.

3. BTB-APF-Informed-RRT* Algorithm Design
3.1. Probabilistic Adaptive Target Bias Strategy

A fixed-probability target bias may fail in complex environments, as the algorithm frequently
hits obstacles. This paper designs an adaptive target bias strategy: set the target bias probability
pbias. During each sampling process, the algorithm selects the target point as the sample point with
probability pbias; otherwise, it performs random sampling. This strategy effectively guides the trees
to grow toward the target and reduces invalid sampling.

Pbias:Pmin+(Pmax'Pmin)Xe"lxnfail (5)

where P, and P;, represent the upper and lower bounds of the bias probability, A denotes the
decay coefficient, and ng; is the number of consecutive expansion failures. When consecutive
failures occur, the algorithm automatically reduces the target bias probability Py;,, increases the
proportion of random sampling, and enhances the algorithm’s ability to escape trap regions. When
expansion is successful, reset ng,;=0, restore a higher Py;,, and strengthen target orientation.

3.2. Improved APF and RRT* Fusion Mechanism

The local minimum problem of traditional APF and its oscillation in narrow channels limit the
method’s performance. This paper improves APF and deeply integrates it into node expansion.

During node expansion, the direction of the APF resultant force is introduced as a component of
the expansion direction, as shown in the following formula:

—_

F total:F att+F rep (6)

where Em (the attractive force) points toward the target point, and ?rep (the repulsive force)
points away from obstacles. The generation direction of the new node is determined by the
weighted sum of the random direction and the resultant force direction.

To solve the problem of the target point being unreachable, the distance term d(g,qgoal) (from
the current point to the target point) is introduced into the repulsion function:

1 1 1,27
- (——-—) d*(qq,,). d(q.q,) <d
el S (959 gou) 9> 9,5 =do

0, d (q,q, ) >d

(7)
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When the robot approaches the goal, d(q,qgoal)—0, and the repulsive force also approaches 0—
thus ensuring that the target point is the global minimum point of the potential field.

3.3. Adaptive Step Size Strategy

The step size is dynamically adjusted based on the distance from the current node to the nearest
obstacle:

d'dsafe
> d<dp

min) dmax'dsafe
d>dmax

where d is the distance from the current node xnearest to the nearest obstacle, dsafe is the safe
distance, and dmax is the maximum influence distance for step size adjustment. When the node is
very close to an obstacle (d—dsafe}$), the step size approaches Stepmin for fine operation to
prevent collision; when the node is in a safe area (d>dmax), the maximum step size Stepmax is used
for rapid exploration.

Step_. +(Step . -Step

StepSize= (8)

Step

max

3.4. Path Post-Processing Optimization
3.4.1. B-Spline Smoothing

The pruned path is still a polyline and requires smoothing. B-spline curves are widely used due
to their good local control and continuity. Given m+1 control points {D0,D1,...,Dm}, the expression
for a k-th degree B-spline curve is:

C(w)=XZ) Ni(w)D; %)

where N; (u) is the k-th degree B-spline basis function, which can be calculated using the de
Boor-Cox recurrence formula.

This paper uses cubic B-spline curves (k=3), and takes the key points after path pruning as
control points to fit a second-order continuous smooth path. This ensures the continuity of velocity
and acceleration during the robotic arm’s movement.

4. Simulation Experiments and Result Analysis
4.1. Experimental Environment and Parameter Settings

Simulations were conducted in a Python environment. The size of the 2D map was set to 5030
units, with the start point at (2,2) and the goal point at (49,24). Three different scenario models were
constructed: an obstacle-free scenario, a simple obstacle scenario, and a complex obstacle scenario.
The path search results of each algorithm in the 2D scenarios are shown in Figure 3.

Informed rrt*, N = 1000

Informed rrt*, N = 1000 Informed rrt*, N = 1000 35

a) Informed RRT * path search in two-dimensional scenes
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Figure 3: Path Search Results in 2D Scenarios
Table 2: Performance Comparison of Various Algorithms in 2D Scenarios

. Average Planning | Path node
Scene Algorithm path length time count
Informed-RRT* 52.867 2.466 48
Score Informed-RRT* 52.078 1.045 40
Algorlth.m in this 51894 0.105 3
article
Informed-RRT* 55.073 5.366 60
Simple Bidirectional-
Scene Informed-RRT* 54.886 3.889 55
Algorlth_m in this 54756 0523 10
article
Informed-RRT* 60.064 8.446 87
Complex Bidirectional-
Scene Informed-RRT* 59.887 6.380 68
Algorithm inthis | 5o 305 | () 63g 18
article

As can be seen from Table 2, in the three different scenarios, the improved algorithm proposed
in this paper showed improvements over the Informed-RRT* algorithm and the Bidirectional
Informed-RRT* algorithm in terms of average path length, planning time, and number of path
nodes— with particularly significant reductions in planning time and the number of path nodes.

The planned path was pruned and smoothed using cubic B-spline curves. After pruning and
smoothing, the path became significantly smoother, providing a smooth and effective path for
subsequent robotic arm simulation experiments and effectively avoiding oscillation in the robotic
arm’s motion path.
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A physical platform was built based on the simulation environment. An end-effector and a depth
camera were installed on joint 6 to facilitate operation in special scenarios. The robotic arm could
effectively avoid obstacles according to the pre-planned path and move from the start point to the
target point without collision-demonstrating the effectiveness and practicality of the improved
algorithm proposed in this paper.

5. Conclusion and Prospects

This paper proposed a robotic arm path planning algorithm based on the Bidirectional Target-
Biased APF-Informed-RRT*. By integrating strategies including target-biased sampling, APF
guidance, adaptive step size adjustment, and path optimization, the algorithm significantly improves
the efficiency and quality of path planning. Simulation results show that the proposed algorithm
outperforms traditional algorithms in terms of planning time, number of sampling points, and path
quality. Comparative simulations of the improved algorithm with other algorithms in different
scenarios confirm that the proposed algorithm has a faster convergence speed. Additionally, the
feasibility of the algorithm on a physical robotic arm platform was verified.
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