
Research on Robotic Arm Path Planning Algorithm 

Based on Bidirectional Target-Biased APF-Informed-

RRT* Algorithm 

Zhai Linlin1,a,*, Fu Jiajie1 

1Shanghai Technical Institute of Electronics & Information, Wahong Highway, Shanghai, China 
azhaill1992@163.com 

*Corresponding author 

Keywords: Robotic Arm; Path planning algorithm; Bidirectional target bias; Adaptive step 

size; Artificial Potential Field (APF); B-spline smoothing 

Abstract: Aiming at the problems of high search randomness, poor target bias, and low path 

quality in traditional robotic arm path planning algorithms, a Bidirectional Target-Biased 

APF-Informed-RRT* (BTB-APF-Informed-RRT*) algorithm is proposed. Firstly, a 

probabilistically adaptive target bias strategy is introduced based on the bidirectional 

Informed-RRT* to reduce the randomness of the original bidirectional RRT* search and 

improve sampling efficiency. Secondly, the Artificial Potential Field (APF) method is 

integrated into the path expansion process of the bidirectional search trees to reduce the 

number of algorithm iterations. Simultaneously, during the path growth phase, an adaptive 

step size growth strategy is adopted, which dynamically adjusts the step size according to 

the expansion trend of the search tree to avoid local optima and shorten the path search time 

until an initial path is generated. Finally, redundant nodes in the generated path are 

removed using the triangle inequality principle, and the path is smoothed using cubic B-

spline curves to obtain the optimal planned path. Simulation comparisons of the improved 

algorithm were conducted in two-dimensional environments under three different scenarios. 

The results show that the improved algorithm effectively enhances relevant performance. 

Applying the improved algorithm to a physical platform further demonstrates its 

effectiveness and feasibility. 

1. Introduction 

With the rapid development of intelligent manufacturing and automation technology, robotic 

arms— as core equipment of execution units— have been widely used in complex operation 

scenarios such as assembly, welding, spraying, handling, and precision measurement. Path planning 

is a fundamental and key technology to ensure that robotic arms complete tasks autonomously, 

safely, and efficiently. Its goal is to find a collision-free feasible motion trajectory from the start 

state to the target state in a high-dimensional configuration space (C-Space) filled with obstacles, 

while also meeting certain optimization indicators (e.g., shortest path, time optimality, or energy 

efficiency). 
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Traditional path planning algorithms, such as graph search algorithms like A* and Dijkstra 

algorithms, are effective in low-dimensional discrete spaces. However, their computational 

complexity increases exponentially with dimensionality, making them difficult to apply to the high-

dimensional continuous C-Space of robotic arms. The Rapidly-exploring Random Tree (RRT) 

algorithm, based on random sampling, has become a research hotspot in robotic arm path planning 

due to its probabilistic completeness, the absence of a need for explicit environmental model 

construction, and good adaptability to high-dimensional spaces. Many scholars have proposed 

improvements to it. Wu Kai [1] et al. proposed an improved RRT algorithm: to enhance sampling 

guidance and search efficiency, they introduced a target-biased sampling strategy with prior 

conditions and an adaptive step size strategy. Liu Yang [2] et al., addressing issues such as high 

sampling randomness, low planning efficiency, and tortuous paths prone to oscillation in traditional 

RRT* algorithms in complex 3D scenes, proposed an improved RRT* algorithm that integrates a 

Sobol sequence sampling strategy, the artificial potential field method, and a path optimization 

strategy. By proposing a low-discrepancy Sobol sequence sampling strategy, they improved the 

shortcomings of repeated sampling in random sampling strategies; during the growth of the 

expansion tree, they proposed a method integrating the artificial potential field to guide the 

generation of new nodes, thereby enhancing path search capability and accelerating convergence 

speed. Nevertheless, these algorithms still suffer from inherent drawbacks such as blind random 

sampling, low search efficiency, tortuous paths, and non-optimality. 

To overcome the above problems, scholars have proposed many improvement schemes. The 

RRT* algorithm proposed by Karaman et al. [3] achieves asymptotic path optimality by introducing 

"rewiring" and "reparenting" operations, but its convergence speed is slow. The RRT-Connect [4] 

(or bidirectional RRT, Bi-RRT) algorithm proposed by Kuffner et al. grows two random trees 

simultaneously from the start and goal points, and significantly improves search efficiency through 

an alternating expansion strategy. The Informed-RRT* algorithm proposed by Gammell et al. [5] 

limits the sampling area to an elliptical hypersphere with the start and end points as foci after 

finding an initial path, thus focusing the optimization search and accelerating convergence. 

Furthermore, integrating heuristic information into the RRT framework is another important 

research direction. The Artificial Potential Field (APF) method [6] guides the search by simulating 

the attraction of the target point and the repulsion of obstacles, and is widely combined with RRT to 

enhance target orientation and local obstacle avoidance capability. However, traditional APF is 

prone to falling into local minima. 

Although existing research has made significant progress, current bidirectional RRT* algorithms 

still face problems such as excessive sampling randomness, unsatisfactory convergence speed in 

complex environments, and generated initial paths with numerous redundant nodes and poor 

smoothness. Although the target bias strategy can guide the search to a certain extent, a fixed bias 

probability is difficult to adapt to complex and dynamic obstacle environments. 

Aiming at the above problems, this paper deeply integrates multiple strategies based on existing 

research and proposes a Bidirectional Target-Biased APF-Informed-RRT* (BTB-APF-Informed-

RRT*) algorithm. This algorithm incorporates a probabilistically adaptive bias strategy in the 

sampling phase to dynamically adjust sampling tendency, making sampling more targeted; in the 

new node expansion phase, it deeply integrates APF with the bidirectional search process based on 

the distance to obstacles, effectively guiding the trees to grow toward the goal and avoid obstacles. 

Moreover, an adaptive step size mechanism based on environmental information is introduced to 

enhance the algorithm’s search performance in different scenarios (e.g., narrow passages and open 

areas). By incorporating a robotic arm collision detection model, the generated path is processed 

with triangle inequality pruning and cubic B-spline smoothing to obtain a shorter and smoother final 

path. 
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2. Robotic Arm Path Planning 

2.1. Robotic Arm Kinematic Modeling 

An industrial robotic arm is a multi-degree-of-freedom linkage mechanism. A mathematical 

model is required to establish the relationship between the coordinates of the robotic arm’s end-

effector in the world coordinate system and the joint angles. This paper takes the Lefei collaborative 

robot LM3 as the research object. The CAD model of the industrial robot is shown in Figure 1(a), 

and the robotic arm model established using the Denavit-Hartenberg (DH) method is shown in 

Figure 1(b). The DH parameter table of the robotic arm can be obtained as shown in Table 1. 

         
(a) Lebai Robot Model                                          (b) Robotic Arm D-H Model* 

Figure 1: Robot Model 

Table 1: Robotic Arm D-H Parameter Table 

Jointi αi-1/(°) ai-1/mm θi-1/(°) di/mm 

1 0 0 0 0.21583 

2 1.5708 0 0 0 

3 0 -0.28 0 0 

4 0 -0.26 0 0.12063 

5 1.5708 0 0 0.09833 

6 -1.5708 0 0 0.08343 

The meanings of each parameter in the table are: αi-1 representing the torsion angle of the 

connecting rod; ai-1 Indicate the length of the connecting rod; di represents the offset of the 

connecting rod. Based on these four parameter quantities, describe the transformation matrix of the 

i-th connecting rod relative to the previous connecting rod i-1 using the following equation: 

T i
i-1

= [

cos θi - sin θi cos αi
sin θi cos θi cos αi

0           sin αi
0          0

     sin θi sin αi ai cos θi

     -cos θi sin αi ai sin θi
             cos αi            di

           0             1

]            (1) 

For a six-axis serial robotic arm, the homogeneous transformation matrix from the base 

coordinate system to the end-effector coordinate system $_{6}^{0}T$ can be obtained by 

multiplying the six transformation matrices corresponding to each joint. 

T= T(θ1)
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            (2) 

Collision detection is essential for robotic arm path planning. The LM3 industrial robot consists 

of 6 joints, and detecting each joint can determine whether the robotic arm collides with obstacles. 

To simplify the model, the robotic arm links are equivalent to cylinders, and irregular obstacles are 

enveloped using spheres and cuboids. Finally, the collision detection task is transformed into an 
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interference intersection problem between regular geometric bodies, which improves computational 

efficiency. 

2.2. RRT* Algorithm 

The RRT* algorithm introduces rewiring (reparenting) and neighbor connection optimization 

mechanisms based on the basic RRT algorithm, achieving asymptotic optimality by continuously 

optimizing path cost. Its core steps are as follows: 

(1) Random Sampling: Generate a random sample within the configuration space. 

(2) Finding the Nearest Neighbor Node: Identify the closest node in the existing tree relative to 

the sample point. 

(3) Rewiring (Reparenting): After generating a new node xnew, the algorithm does not simply 

set its parent node as the nearest node xnearest. Instead, it searches for all potential parent 

nodes  xnear within a spherical neighborhood of xnew with radius r, calculates the cost from the 

start point to xnew via each  xnear, and selects the node with the minimum cost as xnew’s parent. 

(4) Neighbor Connection Optimization: After rewiring the parent node, the algorithm rechecks 

the  xnear nodes within the neighborhood. If the cost from the start point to  xnear via xnew is lower 

than its original cost, the parent node of  xnear is reset to xnew, and its cost is updated. 

By repeatedly executing these processes, the path generated by RRT* gradually approaches the 

optimal path as the number of iterations increases. 

2.3. Bidirectional RRT* (B-RRT*) 

The Bidirectional RRT* algorithm introduces bidirectional search and a greedy connect 

algorithm based on the RRT* algorithm. It constructs random trees at the initial and target positions 

respectively, and the two trees grow toward each other until they meet— at which point the path 

search stops and a feasible path is generated. The B-RRT* algorithm maintains two random trees Ta 

and Tb simultaneously: one rooted at the start point  xinit and the other at the goal point xgoal. In 

each iteration, the algorithm alternately expands the two trees. After expanding one tree to obtain a 

new node xnew, it does not immediately attempt to connect the two trees; instead, it tries to connect 

xnew to the other tree. Specifically, it finds the node xnaer closest to xnew in the other tree. If the 

connection between xnew and xnaer is collision-free and the path cost after connection is lower, a path 

is successfully found. Functional diagram is shown in Figure 2.This method greatly improves 

search efficiency, especially in narrow passage environments. 

 

Figure 2: B-RRT* random trees 

2.4. Artificial Potential Field (APF) Method 

The Artificial Potential Field method models the robot’s motion as movement in a virtual force 
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field. The target point generates an attractive potential field U att(q) to attract the robot toward it: 

Uatt（q）=
1

2
ζd

2（q, q
goal

）         (3) 

Where ζ is the gravitational gain coefficient, and d(q,qgoal) is the distance from the current point 

q to the target point qgoal. 

Obstacles generate a repulsive potential fieldUrep(q) to repel the robot away: 

Urep(q)= {

1

2
η（

1

d（q, qobs）
-

1

d0
）

2

,     d（q, q
obs

）≤d0  

0,                                        d（q, q
obs

）>d0

                       (4) 

Where η is the repulsive gain coefficient, d(q,qobs) is the distance from the current point to the 

obstacle, and d0 is the distance affected by the obstacle. 

3. BTB-APF-Informed-RRT* Algorithm Design 

3.1. Probabilistic Adaptive Target Bias Strategy 

A fixed-probability target bias may fail in complex environments, as the algorithm frequently 

hits obstacles. This paper designs an adaptive target bias strategy: set the target bias probability 

pbias. During each sampling process, the algorithm selects the target point as the sample point with 

probability pbias; otherwise, it performs random sampling. This strategy effectively guides the trees 

to grow toward the target and reduces invalid sampling. 

Pbias=Pmin+(Pmax-Pmin)×e
-λ×𝑛𝑓𝑎𝑖l                          (5) 

where Pmax and Pmin represent the upper and lower bounds of the bias probability, λ denotes the 

decay coefficient, and nfail  is the number of consecutive expansion failures. When consecutive 

failures occur, the algorithm automatically reduces the target bias probability Pbias, increases the 

proportion of random sampling, and enhances the algorithm’s ability to escape trap regions. When 

expansion is successful, reset nfail=0, restore a higher Pbias, and strengthen target orientation. 

3.2. Improved APF and RRT* Fusion Mechanism 

The local minimum problem of traditional APF and its oscillation in narrow channels limit the 

method’s performance. This paper improves APF and deeply integrates it into node expansion.   

During node expansion, the direction of the APF resultant force is introduced as a component of 

the expansion direction, as shown in the following formula: 

F⃑⃑ total=F⃑⃑ att+F⃑⃑ rep                     (6) 

where F⃑ att  (the attractive force) points toward the target point, and F⃑ rep  (the repulsive force) 

points away from obstacles. The generation direction of the new node is determined by the 

weighted sum of the random direction and the resultant force direction. 

To solve the problem of the target point being unreachable, the distance term d(q,qgoal) (from 

the current point to the target point) is introduced into the repulsion function: 

Urep(q)= {

1

2
η（

1

d（q, qobs）
-

1

d0
）

2

d
2
(q,q

goal
),     d（q, q

obs
）≤d0  

0,                                                     d（q, q
obs

）>d0

                 (7) 
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When the robot approaches the goal, d(q,qgoal)→0, and the repulsive force also approaches 0— 

thus ensuring that the target point is the global minimum point of the potential field. 

3.3. Adaptive Step Size Strategy 

The step size is dynamically adjusted based on the distance from the current node to the nearest 

obstacle: 

StepSize= {
Step

min
+(Step

max
-Step

min
)∙

d-dsafe

dmax-dsafe
,        d≤dmax 

Step
max

                                                         d>dmax  
                  (8) 

where d is the distance from the current node xnearest to the nearest obstacle, dsafe is the safe 

distance, and dmax is the maximum influence distance for step size adjustment. When the node is 

very close to an obstacle (d→dsafe}$), the step size approaches Stepmin for fine operation to 

prevent collision; when the node is in a safe area (d≥dmax), the maximum step size Stepmax is used 

for rapid exploration. 

3.4. Path Post-Processing Optimization 

3.4.1. B-Spline Smoothing 

The pruned path is still a polyline and requires smoothing. B-spline curves are widely used due 

to their good local control and continuity. Given m+1 control points {D0,D1,...,Dm}, the expression 

for a k-th degree B-spline curve is: 

C(u)= ∑ Ni,k(u)Di
m
i=0                      (9) 

where Ni,k(u) is the k-th degree B-spline basis function, which can be calculated using the de 

Boor-Cox recurrence formula. 

This paper uses cubic B-spline curves (k=3), and takes the key points after path pruning as 

control points to fit a second-order continuous smooth path. This ensures the continuity of velocity 

and acceleration during the robotic arm’s movement. 

4. Simulation Experiments and Result Analysis 

4.1. Experimental Environment and Parameter Settings 

Simulations were conducted in a Python environment. The size of the 2D map was set to 50×30 

units, with the start point at (2,2) and the goal point at (49,24). Three different scenario models were 

constructed: an obstacle-free scenario, a simple obstacle scenario, and a complex obstacle scenario. 

The path search results of each algorithm in the 2D scenarios are shown in Figure 3. 

 
a) Informed RRT * path search in two-dimensional scenes 

131



 
b) Bidirectional Informed RRT * path search in 2D scenes 

 
c) The algorithm path search in this article under two-dimensional scenes 

Figure 3: Path Search Results in 2D Scenarios 

Table 2: Performance Comparison of Various Algorithms in 2D Scenarios 

Scene Algorithm 
Average 

path length 

Planning 

time 

Path node 

count 

Accessible 

Scene 

Informed-RRT* 52.867 2.466 48 

Bidirectional-

Informed-RRT* 
52.078 1.045 40 

Algorithm in this 

article 
51.894 0.105 3 

Simple 

Scene 

Informed-RRT* 55.073 5.366 60 

Bidirectional-

Informed-RRT* 
54.886 3.889 55 

Algorithm in this 

article 
54.756 0.523 10 

Complex 

Scene 

Informed-RRT* 60.064 8.446 87 

Bidirectional-

Informed-RRT* 
59.887 6.380 68 

Algorithm in this 

article 
58.385 0.638 18 

As can be seen from Table 2, in the three different scenarios, the improved algorithm proposed 

in this paper showed improvements over the Informed-RRT* algorithm and the Bidirectional 

Informed-RRT* algorithm in terms of average path length, planning time, and number of path 

nodes— with particularly significant reductions in planning time and the number of path nodes. 

The planned path was pruned and smoothed using cubic B-spline curves. After pruning and 

smoothing, the path became significantly smoother, providing a smooth and effective path for 

subsequent robotic arm simulation experiments and effectively avoiding oscillation in the robotic 

arm’s motion path. 
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A physical platform was built based on the simulation environment. An end-effector and a depth 

camera were installed on joint 6 to facilitate operation in special scenarios. The robotic arm could 

effectively avoid obstacles according to the pre-planned path and move from the start point to the 

target point without collision-demonstrating the effectiveness and practicality of the improved 

algorithm proposed in this paper. 

5. Conclusion and Prospects 

This paper proposed a robotic arm path planning algorithm based on the Bidirectional Target-

Biased APF-Informed-RRT*. By integrating strategies including target-biased sampling, APF 

guidance, adaptive step size adjustment, and path optimization, the algorithm significantly improves 

the efficiency and quality of path planning. Simulation results show that the proposed algorithm 

outperforms traditional algorithms in terms of planning time, number of sampling points, and path 

quality. Comparative simulations of the improved algorithm with other algorithms in different 

scenarios confirm that the proposed algorithm has a faster convergence speed. Additionally, the 

feasibility of the algorithm on a physical robotic arm platform was verified. 
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