
Analysis of Localization Algorithms for ROS-Based

Mobile Industrial Robots

Yaping Wu

Beijing ETZD Technology Co., Ltd., Beijing, China

Keywords: ROS; Industrial Robot; Localization Algorithm; AMCL; EKF; Multi-Sensor

Fusion; Lidar; SLAM

Abstract: With the advancement of intelligent manufacturing and flexible automation,

mobile industrial robots are increasingly being deployed in scenarios such as material

handling, inspection, and collaborative operations. As one of the core technologies for

mobile robots, the localization system has a direct impact on the stability and accuracy of

path planning and task execution. This paper, built on the Robot Operating System (ROS)

platform, systematically reviews and analyzes the implementation mechanisms and

applicable scenarios of mainstream localization algorithms, with a focus on the

performance characteristics of the Extended Kalman Filter (EKF) and Adaptive Monte

Carlo Localization (AMCL) in industrial settings. By constructing an experimental

platform that fuses multiple sensors—lidar, IMU, and wheel odometry—a series of tests

comparing localization accuracy and robustness are conducted. We evaluate each

algorithm’s adaptability to complex conditions including dynamic occlusions, uniform

environmental textures, and multipath interference. The results indicate that AMCL

achieves higher positioning accuracy in static, structured environments, whereas EKF is

better suited to dynamic applications suffering from sensor drift and data latency. Finally,

we propose an optimization approach that integrates visual SLAM and deep-learning–

based feature extraction, offering guidance for designing highly reliable localization

systems for future industrial robots.

1. Introduction

Against the rapid rise of intelligent manufacturing and industrial automation, mobile industrial

robots—praised for their flexibility and efficiency—now underpin key operations like warehouse

logistics, inspection, and material handling. Reliable localization and navigation are crucial, as they

directly impact path planning, obstacle avoidance, and overall system intelligence. Advances in

sensors and computing have shifted localization from simple wheel-odometry to multi-sensor fusion

frameworks that combine lidar, IMU, vision, and prebuilt maps. ROS has become the standard

development platform, offering modular, open-source implementations of EKF, AMCL, and SLAM.

However, real-world workshops pose challenges—complex layouts, occlusions, repetitive textures,

and dynamic disturbances—that can induce drift or failure, all under tight real-time and resource

constraints. This paper systematically analyzes and compares EKF and AMCL on a ROS-based

testbed with lidar, IMU, and odometry, aiming to guide the design of robust, high-performance

Journal of Engineering Mechanics and Machinery (2025)
Clausius Scientific Press, Canada

DOI: 10.23977/jemm.2025.100204
ISSN 2371-9133 Vol. 10 Num. 2

23

localization systems for industrial robots.

2. ROS System Architecture and Localization Module Principles

2.1. ROS Architecture and Its Deployment for Mobile Robots

Industrial workshop environments typically involve multiple heterogeneous sensors, dynamic

disturbances, and strict real-time constraints. Under these conditions, system architecture must

support modular deployment, information decoupling, and multi-robot collaboration. A central

workstation runs the ROS Master and hosts key nodes (Mission Planner, Path Planner, Sensor

Controller, etc.). It communicates—via wired or wireless links—with various end devices, issuing

navigation and control commands to unmanned aerial vehicles (UAVs) and unmanned ground

vehicles (UGVs), while collecting real-time data from payload sensors (temperature, humidity,

illumination, CO₂ concentration, etc.) on Raspberry Pi edge devices. Sensor data are first

preprocessed and transformed into a common coordinate frame by the Sensor Controller node

(using ROS TF), then published over ROS topics to the path-planning and localization modules[1].

The Path Planner node fuses the preloaded map with odometry and IMU data to generate global and

local trajectories, which are dispatched to individual robots for execution. The Mission Planner

handles high-level task scheduling and multi-robot coordination, dynamically adjusting priorities

and routes based on state feedback from subsystems as shown in figure 1[2].

Figure 1: Diagram of the overall system architecture

Within this architecture, the localization module may operate as part of the Path Planner or run

independently on each robot or edge device. It exposes ROS services and actions for

starting/stopping localization, querying parameters, and dynamic reconfiguration, thereby providing

flexible, reliable support for rapidly changing layouts and multi-task switching in industrial

settings[3].

ROS achieves modularity and decoupling through distributed nodes and a publish/subscribe

messaging system. Deployment begins by launching the ROS Master on the central workstation,

24

which acts as the registration center and message broker. On each subsystem (UAV, UGV,

Raspberry Pi), nodes for localization, control, and sensor drivers are launched, with configurations

loaded from the ROS Parameter Server[4]. Nodes exchange data via predefined topics—such as

/scan for lidar, /odom for odometry, /imu/data for IMU readings, and /tf for coordinate

transforms—to ensure spatiotemporal alignment across all sensors.ROS services and actions

provide synchronous calls and long-running task management. For instance, the localization module

may offer a /amcl/get_pose service to request the current pose or use an action server to stream

global path-tracking feedback. In multi-robot scenarios, ROS namespaces isolate topics and

services per robot, simplifying management and log separation while meeting industrial

requirements for reliability and determinism[5].

2.2. ROS Integration of Localization Hardware and Modules

Industrial environments demand both high-performance computing and robust multi-sensor

perception. As shown in Figure 2, the robot’s hardware platform comprises a ZOTAC PC (8th-gen

Intel Core i7, 16 GB RAM, 500 GB SSD), an NVIDIA Xavier edge module, and core sensors such

as a 360° 16-beam Robosense 3D lidar, an Intel RealSense D435 depth camera, and an Xsens

MTi-300 IMU. A 4G/Wi-Fi router ensures low-latency communication with the central

controller[6].

Figure 2: Schematic diagram of the mobile robot hardware platform and multi-sensor integration

Within ROS, each physical device is represented by one or more driver nodes, which publish

relevant data on topics or expose services. Specifically:Lidar (Robosense-16) is driven by the

rslidar_ros or robosense_driver package, publishing point clouds to /scan or /points and aligning its

frame via TF.Depth Camera (RealSense D435) runs the realsense2_camera node group, outputting

raw depth images (/camera/depth/image_raw), color images (/camera/color/image_raw), and

camera intrinsics/extrinsics for visual SLAM or feature-based localization.IMU uses the imu_driver

to publish raw accelerometer and gyroscope data to /imu/data_raw, which are fused with odometry

(/odom) in the robot_localization or robot_pose_ekf package to improve short-term motion

estimates.Compute Units distribute tasks: the ZOTAC PC handles global localization and planning

25

(gmapping, amcl, move_base), while the Xavier module performs real-time vision processing and

deep learning inference (e.g., YOLO object detection or visual odometry)[7].Communication

Module ensures all nodes register under a single ROS Master, enabling cross-network topic

forwarding (via multimaster_fkie or rosbridge) for remote monitoring and debugging.This

integration seamlessly aggregates multi-sensor data within the ROS ecosystem, providing

time-synchronized inputs for EKF, AMCL, or visual SLAM algorithms and enabling high-precision,

robust localization in industrial environments[8].

3. Analysis of Mainstream ROS Localization Algorithms

3.1. Extended Kalman Filter (EKF) and Fusion-Based Localization

The Extended Kalman Filter (EKF) is a widely used multi-sensor fusion localization method in

ROS. Its core idea is to linearize both the system and observation models via a first-order Taylor

series expansion around the current state estimate and then apply the standard linear Kalman filter

equations at each time step to estimate the state and its covariance[9].The system state vector is

typically chosen to represent the robot’s planar pose and velocities, for example as shown in

Formula 1:

xk = [xyθvω]T (1)

Where (x, y, θ) denote the robot’s position and orientation in the global frame, and v and ω

denote the linear and angular velocities, respectively.The state prediction uses a discrete-time

kinematic model ff, assuming control inputs of linear acceleration aka_k and angular acceleration α

as shown in Formula 2:

xk∣k−1 = f(xk−1∣k−1, uk) =

[

xk−1 +xk−1 + vk−1cosθk−1Δt

yk−1 + vk−1sinθk−1Δt
θk−1 + wk−1Δt
vk−1 + αkΔt
wk−1 + αkΔt]

 (2)

Its Jacobian (state transition matrix) is as shown in Formula 3:

Fk =
∂f

∂x
xk−1uk =

[

1
0
0
0
0

0
1
0
0
0

−vsinθΔt
vcosθΔt

1
0
0

cosθΔt
sinθΔt

0
1
0

0
0
Δt
0
1]

 (3)

The covariance prediction is as shown in Formula 4:

Pk∣k−1 = FkPk−1∣k−1Fk
T + Qk (4)

Where Qk is the process noise covariance matrix.Given an observation model hh, the sensor

measurement vector zk may include odometry, IMU angular velocities, GPS positions as shown in

Formula 5:

zk = h(xk∣k−1) + vk (5)

Linearizing h around the predicted state yields the observation matrix as shown in Formula 6:

Hk =
∂h

∂x
xk|k−1 (6)

The Kalman gain is computed as Kk = Pk∣k−1Hk
T(HkPk∣k−1Hk

T + Rk) − 1 where Rk is the

26

observation noise covariance. The state and covariance updates as shown in Formula 7:

xk∣k = xk∣k−1 + xk∣(zk∣ − h(xk∣k−1)) (7)

In the ROS ecosystem, the robot_localization or robot_pose_ekf packages encapsulate this EKF

workflow. They fuse multi-source inputs—such as /odom (odometry), /imu/data (IMU), and /gps/fix

(GPS)—by mapping each topic to the relevant state variables and specifying noise covariances in a

YAML configuration file. These packages support dynamic reconfiguration, allowing filter

parameters to be tuned at runtime to match the operating environment, thereby enhancing

localization accuracy and robustness. Through EKF fusion, sensor data are optimally weighted in

both time and space. If one sensor becomes unreliable or fails, the system can rely on the remaining

sensors to maintain stable localization, meeting the high availability requirements of industrial

robots in complex settings[10].

3.2. Adaptive Monte Carlo Localization (AMCL) Algorithm Analysis

Adaptive Monte Carlo Localization (AMCL) in ROS implements a particle filter approach to

estimate the robot’s pose on a known map by randomly sampling and weighting possible poses. The

AMCL algorithm comprises three main steps: prediction (motion update), measurement update, and

resampling. Under the motion model, each particle {xt−1
i , wt−1

i }i=1
N is propagated according to the

control input ut as shown in Formula 8:

tixi
t ∼ p(xt ∣ ut, xt−1

i) (8)

Using lidar or depth camera observations zt, each predicted particle is assigned a weight:

wt
i = p(zt ∣ xt

i) ,often modeled by a Gaussian likelihood as shown in Formula 9:

p(zt ∣ xt
i) = exp(−

1

2
∑ (

zt,k−ẑt,k(xt
i)

σk
)2

k) (9)

Where zt,k is the actual measurement of the k-th beam, ẑt,k is the predicted measurement from

the map at pose xt
i, and σk is the measurement noise standard deviation.Particles are resampled

according to their weights, and the particle count NN is adaptively adjusted to maintain diversity

when uncertainty grows and to reduce computational load upon convergence. AMCL computes the

effective sample size as shown in Formula 10:

Neff =
1

∑ (wt
i)2i

< Nthres (10)

And triggers resampling when Neff falls below a predefined threshold Nthres.In ROS, the amcl

package provides a complete implementation of this algorithm. Users can configure the laser

measurement model, resampling threshold, and particle limits via parameters, making AMCL well

suited for static or slowly varying industrial environments and enabling high-precision online

localization.

4. Experimental Design and Comparative Results

4.1. Experimental Platform and Scenario Setup

To comprehensively evaluate the performance of EKF and AMCL localization algorithms in

industrial environments, we constructed a high-fidelity testbed under ROS Noetic. The mobile robot

features a four-wheel differential drive chassis with a top speed of 1.5 m/s and is fitted with

soft-compound wheels and high-friction tires to suit workshop floors. Its main compute unit is a

27

ZOTAC PC equipped with an 8th-generation Intel Core i7 processor, 16 GB of RAM, and a 500 GB

SSD; in addition, an NVIDIA Xavier module on the robot handles vision processing and

deep-learning inference. The sensor suite comprises a 16-beam 360° Robosense 3D LiDAR, an

Intel RealSense D435 depth camera, and an Xsens MTi-300 IMU. Each sensor publishes data to

ROS topics—/scan, /camera/depth, and /imu/data_raw—for point clouds, depth images, and inertial

measurements respectively. Communication relies on an enterprise-grade 802.11ac dual-band Wi-Fi

network, ensuring inter-node latency under 50 ms. On the software side, the robot and central

workstation synchronize their clocks via Chrony. We use the Gmapping package to build a 0.05

m-resolution occupancy grid map and the Robot Localization package to fuse odometry, IMU, and

GPS (or Vicon ground-truth) data. All node parameters are managed centrally through the ROS

Parameter Server, supporting dynamic reconfiguration of filter noise covariances and AMCL

resampling thresholds in real time.

The test scenarios cover three typical industrial settings: Open Area (10 m × 10 m): An

obstacle-free, static environment to measure convergence speed and static localization accuracy.

Rack-Obstructed Area: Multiple rows of metal racks and support columns arranged with 1.2 m-wide

aisles, to assess the impact of multipath reflections and occlusions on localization error. Dynamic

Disturbance Area: Random pedestrian traffic and moving carts introduced between the open and

rack areas, simulating dynamic interference to evaluate each algorithm’s robustness to temporary

sensor occlusion and its drift-recovery capability. Ground truth is provided by a Vicon

motion-capture system at 10 Hz with sub-centimeter accuracy. Evaluation metrics include

root-mean-square error (RMSE), maximum error, convergence time (time to first reach error below

0.1 m), and drift-recovery time in dynamic conditions. This experimental setup enables a systematic,

quantitative comparison of EKF and AMCL accuracy and stability under challenging industrial

conditions.

4.2. Localization Accuracy and Robustness Comparison

In the Open Area, Rack-Obstructed Area, and Dynamic Disturbance Area, we collected

localization data for EKF and AMCL and compared static accuracy, error variability, maximum

error, convergence time, drift recovery, and recovery success rate.

Figure 3: Open Area Results

28

As the Figure 3 shown, AMCL’s particle-filter approach yields a lower mean error (0.038 m vs.

0.045 m) and smaller variability (σ=0.010 m vs. 0.012 m), as reflected in its tighter median (0.036

m). Both methods remain well below 0.1 m maximum error, but AMCL demonstrates marginally

higher precision and consistency in obstacle-free conditions.

Figure 4: Rack-Obstructed Area Results

As the Figure 4 shown, under frequent multipath reflections and occlusions, EKF converges

faster (1.8 s vs. 2.5 s), yet exhibits higher variability (σ=0.018 m). AMCL’s resampling produces a

lower average drift (0.155 m vs. 0.180 m) and tighter error distribution, with a median

post-convergence error of 0.053 m.

Table 1: Dynamic Disturbance Area Results

Algorithm
Average Recovery

Time (s)

Recovery Success

Rate (%)

Pre-Recovery

Max Drift (m)

Post-Recovery

RMSE (m)
Std. Dev. (m)

EKF 3.2 100 0.240 0.074 0.020

AMCL 4.1 95 0.310 0.068 0.017

As the Table 1, in the presence of random pedestrian and cart interference, EKF recovers more

quickly (3.2 s vs. 4.1 s) and maintains a perfect recovery success rate. However, it experiences

larger pre-recovery drift (0.240 m) compared to AMCL (0.310 m), and its post-recovery RMSE

(0.074 m) is slightly higher. AMCL, while showing a 95 % success rate, achieves finer localization

after resampling, with lower variability (σ=0.017 m).

Across all scenarios, AMCL consistently delivers superior static accuracy and tighter error

distributions. EKF excels in rapid convergence and guaranteed recovery, making it more robust for

dynamic occlusions. The extended tables reveal that AMCL’s lower standard deviations and

medians underscore its precision, whereas EKF’s faster response times and perfect recovery success

rate highlight its reliability under abrupt sensor dropouts. A hybrid approach—leveraging EKF for

initial fast convergence and switching to AMCL once the environment stabilizes—remains the most

effective strategy to balance speed, accuracy, and robustness in complex industrial settings.

5. Problem Analysis and Optimization Suggestions

5.1. Applicability and Limitations of Current Algorithms

In complex industrial environments, EKF and AMCL each offer distinct strengths and face

29

inherent limitations. EKF relies on a precise kinematic model and accurately tuned process-noise

covariance; when odometry and IMU data remain continuously available, it converges rapidly and

provides real-time estimates, demonstrating fault tolerance to dynamic occlusions or brief sensor

dropouts. However, if the sensor model does not match reality or the kinematic parameters are

miscalibrated, EKF accumulates drift and is sensitive to non-Gaussian observation noise. By

contrast, AMCL uses a particle-filter approach to sample and resample discrete pose hypotheses

without depending on an exact motion model. It can quickly determine the global pose during

startup or in well-structured maps and maintains high accuracy in static or slowly changing

environments. Its performance, however, hinges on map fidelity and consistent laser readings:

multipath reflections or repetitive floor textures may cause particle weights to collapse into local

minima, slowing convergence. Furthermore, balancing particle count against computational load

complicates parameter tuning, and the resampling delay under dynamic obstacles can impair

short-term robustness. In summary, EKF suits low-latency, continuously moving applications but is

constrained by model errors and noise assumptions; AMCL excels in structured settings requiring

high precision but demands static environments and substantial compute resources. In practice, one

should choose or combine these algorithms according to scene characteristics and system goals to

achieve an optimal trade-off among accuracy, responsiveness, and robustness.

5.2. Feasible Optimization Directions

To enhance both accuracy and robustness of a ROS-based localization system for mobile

industrial robots in challenging settings, we propose the following improvements that leverage the

strengths of EKF and AMCL while mitigating their weaknesses.

1) Multi-Stage Hybrid Localization

An EKF is employed during system startup or scene transitions to ensure rapid convergence.

Leveraging high-rate odometry and IMU predictions, EKF delivers an initial pose estimate within

acceptable error bounds when entering unknown or highly dynamic areas. Once the robot reaches a

relatively steady state, switch dynamically to AMCL, whose high-resolution grid-map sampling

refines static accuracy. A further extension runs EKF and AMCL in parallel, fusing their outputs via

Kalman gains or weight coefficients to balance reliability in real time across varied conditions.

2) Visual SLAM Augmentation

In regions with uniform textures or severe multipath reflections—where laser data may

degrade—introduce a lightweight visual SLAM pipeline (ORB-SLAM2, LDSO, or RTAB-Map).

Extract environmental features from a depth camera’s imagery to build dense or semi-dense point

clouds and keyframe maps. The system fuses visual SLAM pose estimates with AMCL’s

laser-based results to compensate for lidar blind spots (e.g., transparent or reflective obstacles) and

leverage visual texture for improved global consistency.

3) Deep-Learning–Based Semantic Aiding

The system deploys lightweight on-board semantic segmentation (ENet, BiSeNet) or

object-detection (YOLOv5, MobileNet-SSD) networks to identify critical industrial landmarks—

such as support columns, rack ends, and safety signs—and incorporates their pixel coordinates as

semantic priors into the observation model. Matching these semantic features against the dense

point cloud or occupancy grid enhances the measurement model for both EKF and AMCL,

bolstering stability in repeated-texture and dynamic-obstacle scenarios.

4) Online Adaptive Parameter Tuning

Both EKF and AMCL critically depend on filter parameters (process and observation noise

covariances, particle count, resampling thresholds). Manual calibration is time-consuming and often

incomplete. The system introduces online optimization techniques—such as Bayesian optimization,

30

particle swarm optimization, or genetic algorithms—to dynamically adjust noise covariances and

resampling parameters in real time based on localization error and observation-consistency metrics.

Alternatively, a sliding window of ground-truth comparisons can be used to automatically correct

IMU calibration errors and laser-measurement models, allowing the system to continuously “learn”

optimal parameters during operation.

5) Distributed Mapping and Localization Services

For large-scale, multi-robot deployments—such as extensive factory floors or warehouses

—single-host loading of a high-resolution global map can strain compute and memory. Partition the

map into subregions hosted on edge servers and use ROS 2’s DDS or ROS Bridge to request topics

and services across the network. Robots dynamically load only their current subregion’s map and

AMCL instance, while distributed nodes manage seamless submap transitions and global

consistency, ensuring a common reference frame and supporting cooperative localization and

collision avoidance.

6) Integration of External High-Precision Systems

The system deploys Ultra-Wideband (UWB) indoor-positioning anchors, visual fiducials, or

Bluetooth beacons as auxiliary observations in areas demanding centimeter-level accuracy.

High-frequency updates from these systems can correct EKF or AMCL drift and rapidly recover

from localization failures, boosting overall system availability.

7) End-to-End Hardware/Software Co-Optimization

On the hardware side, the system employs low-noise, high-sensitivity IMUs and LiDARs with

multipath-filtering capabilities, while optimizing sensor placement and vibration isolation to

enhance measurement stability. On the software side, critical ROS nodes are executed on a real-time

operating system (RTOS) or configured with Xenomai patches to ensure deterministic latency. In

addition, quality-of-service (QoS) policies and redundant network paths are implemented to

minimize packet loss and jitter, improving the overall robustness of data transmission.Through

holistic co-optimization, substantial gains in accuracy and robustness can be achieved in highly

dynamic, complex industrial settings, laying the groundwork for reliable autonomous inspection,

material transport, and human–robot collaboration.

6. Future Outlook

As industrial intelligence and digital transformation accelerate, ROS-based localization for

mobile industrial robots will face both new opportunities and challenges. Beyond LiDAR, vision,

and IMU, future systems may incorporate ultrasound, millimeter-wave radar, and IoT

environmental sensors (temperature, vibration) into a unified framework. Semantic segmentation

and scene-understanding models can extract high-level features, constructing multimodal

spatiotemporal networks that improve localization stability and precision in complex mixed

environments. With 5G and edge-cloud platforms, robots can combine local computation with

remote resources to access large-scale, high-precision maps and deep-learning models in real time.

Digital-twin simulations in the cloud will enable algorithm validation and rapid deployment of

updates, drastically shortening iteration cycles. In large workshops or logistics hubs, single-robot

localization is insufficient. ROS 2’s DDS communication and semantic-map sharing will allow

multiple robots to collaboratively build and share a global map. Edge inference and distributed

filtering algorithms will synchronize pose estimates, increasing operational efficiency and fault

tolerance. Deep reinforcement learning can automatically tune filter parameters and resampling

strategies, while meta-learning approaches enable quick adaptation to new environments. Over time,

robots will accumulate experience to self-optimize their localization performance, achieving “zero”

or “minimal” manual parameterization. As the ROS ecosystem matures and standards like OPC UA

31

and ROS-Industrial advance, localization modules will become more robust and reusable. Seamless,

cross-vendor integration will enable deployment of high-reliability, safety-certified localization

solutions across diverse verticals—pharmaceutical production, food processing, hazardous-

environment operations—propelling intelligent manufacturing to the next level.

7. Conclusion

This paper presented a systematic comparison of two mainstream ROS localization

algorithms—Extended Kalman Filter (EKF) and Adaptive Monte Carlo Localization

(AMCL)—across open, obstructed, and dynamically disturbed industrial scenarios. Experimental

results demonstrate EKF’s advantage in rapid convergence and dynamic recovery, while AMCL

achieves superior static accuracy in structured environments. To address their respective limitations,

we proposed multi-stage hybrid strategies, visual and semantic augmentations, and online adaptive

tuning. Our analysis and recommendations offer practical guidance for implementing high-precision,

robust localization systems in real-world industrial robotics applications.

References

[1] Alajami, Abdussalam A., et al. "A ROS-based distributed multi-robot localization and orientation strategy for

heterogeneous robots." Intelligent service robotics 16.2 (2023): 177-193.

[2] Irwansyah, Achmad Syahrul, et al. "ROS-based multi-sensor integrated localization system for cost-effective and

accurate indoor navigation system." International Journal of Intelligent Robotics and Applications (2024): 1-19.

[3] Çelik, Orkan Murat, and Murat Köseoğlu. "A modified dijkstra algorithm for ros based autonomous mobile robots."

Journal of Advanced Research in Natural and Applied Sciences 9.1 (2023): 205-217.

[4] Pandey, Anish, et al. "Implementation of simultaneous localization and mapping for TurtleBot under the ROS

design framework." International Journal on Interactive Design and Manufacturing (IJIDeM) 18.6 (2024): 3799-3812.

[5] Sandanika, Wanni Arachchige Heshani, et al. "Ros-based multi-robot system for efficient indoor exploration using

a combined path planning technique." Journal of Robotics and Control (JRC) 5.5 (2024): 1241-1260.

[6] Ahmed Abdulsaheb, Jaafar, and Dheyaa Jasim Kadhim. "Real‐Time SLAM Mobile Robot and Navigation Based on

Cloud‐Based Implementation." Journal of Robotics 2023.1 (2023): 9967236.

[7] Gürevin, Bilal, et al. "A Novel Control and Monitoring Interface Design for ROS Based Mobile Robots." Düzce

Üniversitesi Bilim ve Teknoloji Dergisi 12.1 (2024): 496-509.

[8] Bonci, Andrea, et al. "Robot operating system 2 (ros2)-based frameworks for increasing robot autonomy: A

survey." applied sciences 13.23 (2023): 12796.

[9] Mărieș, Marco, and Mihai Olimpiu Tătar. "Design and Simulation of Mobile Robots Operating Within Networked

Architectures Tailored for Emergency Situations." Applied Sciences 15.11 (2025): 6287.

[10] Kobayashi, Masato, and Naoki Motoi. "Bsl: Navigation method considering blind spots based on ros navigation

stack and blind spots layer for mobile robot." IEEE Transactions on Industry Applications 60.1 (2023): 1695-1704.

32

