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Abstract: With the advancement of intelligent manufacturing and flexible automation, 

mobile industrial robots are increasingly being deployed in scenarios such as material 

handling, inspection, and collaborative operations. As one of the core technologies for 

mobile robots, the localization system has a direct impact on the stability and accuracy of 

path planning and task execution. This paper, built on the Robot Operating System (ROS) 

platform, systematically reviews and analyzes the implementation mechanisms and 

applicable scenarios of mainstream localization algorithms, with a focus on the 

performance characteristics of the Extended Kalman Filter (EKF) and Adaptive Monte 

Carlo Localization (AMCL) in industrial settings. By constructing an experimental 

platform that fuses multiple sensors—lidar, IMU, and wheel odometry—a series of tests 

comparing localization accuracy and robustness are conducted. We evaluate each 

algorithm’s adaptability to complex conditions including dynamic occlusions, uniform 

environmental textures, and multipath interference. The results indicate that AMCL 

achieves higher positioning accuracy in static, structured environments, whereas EKF is 

better suited to dynamic applications suffering from sensor drift and data latency. Finally, 

we propose an optimization approach that integrates visual SLAM and deep-learning–

based feature extraction, offering guidance for designing highly reliable localization 

systems for future industrial robots. 

1. Introduction 

Against the rapid rise of intelligent manufacturing and industrial automation, mobile industrial 

robots—praised for their flexibility and efficiency—now underpin key operations like warehouse 

logistics, inspection, and material handling. Reliable localization and navigation are crucial, as they 

directly impact path planning, obstacle avoidance, and overall system intelligence. Advances in 

sensors and computing have shifted localization from simple wheel-odometry to multi-sensor fusion 

frameworks that combine lidar, IMU, vision, and prebuilt maps. ROS has become the standard 

development platform, offering modular, open-source implementations of EKF, AMCL, and SLAM. 

However, real-world workshops pose challenges—complex layouts, occlusions, repetitive textures, 

and dynamic disturbances—that can induce drift or failure, all under tight real-time and resource 

constraints. This paper systematically analyzes and compares EKF and AMCL on a ROS-based 

testbed with lidar, IMU, and odometry, aiming to guide the design of robust, high-performance 
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localization systems for industrial robots. 

2. ROS System Architecture and Localization Module Principles 

2.1. ROS Architecture and Its Deployment for Mobile Robots 

Industrial workshop environments typically involve multiple heterogeneous sensors, dynamic 

disturbances, and strict real-time constraints. Under these conditions, system architecture must 

support modular deployment, information decoupling, and multi-robot collaboration. A central 

workstation runs the ROS Master and hosts key nodes (Mission Planner, Path Planner, Sensor 

Controller, etc.). It communicates—via wired or wireless links—with various end devices, issuing 

navigation and control commands to unmanned aerial vehicles (UAVs) and unmanned ground 

vehicles (UGVs), while collecting real-time data from payload sensors (temperature, humidity, 

illumination, CO₂ concentration, etc.) on Raspberry Pi edge devices. Sensor data are first 

preprocessed and transformed into a common coordinate frame by the Sensor Controller node 

(using ROS TF), then published over ROS topics to the path-planning and localization modules[1]. 

The Path Planner node fuses the preloaded map with odometry and IMU data to generate global and 

local trajectories, which are dispatched to individual robots for execution. The Mission Planner 

handles high-level task scheduling and multi-robot coordination, dynamically adjusting priorities 

and routes based on state feedback from subsystems as shown in figure 1[2]. 

 

Figure 1: Diagram of the overall system architecture 

Within this architecture, the localization module may operate as part of the Path Planner or run 

independently on each robot or edge device. It exposes ROS services and actions for 

starting/stopping localization, querying parameters, and dynamic reconfiguration, thereby providing 

flexible, reliable support for rapidly changing layouts and multi-task switching in industrial 

settings[3]. 

ROS achieves modularity and decoupling through distributed nodes and a publish/subscribe 

messaging system. Deployment begins by launching the ROS Master on the central workstation, 
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which acts as the registration center and message broker. On each subsystem (UAV, UGV, 

Raspberry Pi), nodes for localization, control, and sensor drivers are launched, with configurations 

loaded from the ROS Parameter Server[4]. Nodes exchange data via predefined topics—such as 

/scan for lidar, /odom for odometry, /imu/data for IMU readings, and /tf for coordinate 

transforms—to ensure spatiotemporal alignment across all sensors.ROS services and actions 

provide synchronous calls and long-running task management. For instance, the localization module 

may offer a /amcl/get_pose service to request the current pose or use an action server to stream 

global path-tracking feedback. In multi-robot scenarios, ROS namespaces isolate topics and 

services per robot, simplifying management and log separation while meeting industrial 

requirements for reliability and determinism[5]. 

2.2. ROS Integration of Localization Hardware and Modules 

Industrial environments demand both high-performance computing and robust multi-sensor 

perception. As shown in Figure 2, the robot’s hardware platform comprises a ZOTAC PC (8th-gen 

Intel Core i7, 16 GB RAM, 500 GB SSD), an NVIDIA Xavier edge module, and core sensors such 

as a 360° 16-beam Robosense 3D lidar, an Intel RealSense D435 depth camera, and an Xsens 

MTi-300 IMU. A 4G/Wi-Fi router ensures low-latency communication with the central 

controller[6]. 

 

Figure 2: Schematic diagram of the mobile robot hardware platform and multi-sensor integration 

Within ROS, each physical device is represented by one or more driver nodes, which publish 

relevant data on topics or expose services. Specifically:Lidar (Robosense-16) is driven by the 

rslidar_ros or robosense_driver package, publishing point clouds to /scan or /points and aligning its 

frame via TF.Depth Camera (RealSense D435) runs the realsense2_camera node group, outputting 

raw depth images (/camera/depth/image_raw), color images (/camera/color/image_raw), and 

camera intrinsics/extrinsics for visual SLAM or feature-based localization.IMU uses the imu_driver 

to publish raw accelerometer and gyroscope data to /imu/data_raw, which are fused with odometry 

(/odom) in the robot_localization or robot_pose_ekf package to improve short-term motion 

estimates.Compute Units distribute tasks: the ZOTAC PC handles global localization and planning 
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(gmapping, amcl, move_base), while the Xavier module performs real-time vision processing and 

deep learning inference (e.g., YOLO object detection or visual odometry)[7].Communication 

Module ensures all nodes register under a single ROS Master, enabling cross-network topic 

forwarding (via multimaster_fkie or rosbridge) for remote monitoring and debugging.This 

integration seamlessly aggregates multi-sensor data within the ROS ecosystem, providing 

time-synchronized inputs for EKF, AMCL, or visual SLAM algorithms and enabling high-precision, 

robust localization in industrial environments[8]. 

3. Analysis of Mainstream ROS Localization Algorithms 

3.1. Extended Kalman Filter (EKF) and Fusion-Based Localization 

The Extended Kalman Filter (EKF) is a widely used multi-sensor fusion localization method in 

ROS. Its core idea is to linearize both the system and observation models via a first-order Taylor 

series expansion around the current state estimate and then apply the standard linear Kalman filter 

equations at each time step to estimate the state and its covariance[9].The system state vector is 

typically chosen to represent the robot’s planar pose and velocities, for example as shown in 

Formula 1: 

xk = [xyθvω]T (1) 

Where (x, y, θ) denote the robot’s position and orientation in the global frame, and v and ω 

denote the linear and angular velocities, respectively.The state prediction uses a discrete-time 

kinematic model ff, assuming control inputs of linear acceleration aka_k and angular acceleration α 

as shown in Formula 2: 

xk∣k−1 = f(xk−1∣k−1, uk) =

[
 
 
 
 
xk−1 +xk−1 + vk−1cosθk−1Δt

yk−1 + vk−1sinθk−1Δt
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The covariance prediction is as shown in Formula 4: 

Pk∣k−1 = FkPk−1∣k−1Fk
T + Qk (4) 

Where Qk is the process noise covariance matrix.Given an observation model hh, the sensor 

measurement vector zk may include odometry, IMU angular velocities, GPS positions as shown in 

Formula 5: 

zk = h(xk∣k−1) + vk (5) 

Linearizing h around the predicted state yields the observation matrix as shown in Formula 6: 

Hk =
∂h

∂x
xk|k−1 (6) 

The Kalman gain is computed as Kk = Pk∣k−1Hk
T(HkPk∣k−1Hk

T + Rk) − 1 where Rk  is the 
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observation noise covariance. The state and covariance updates as shown in Formula 7: 

xk∣k = xk∣k−1 + xk∣(zk∣ − h(xk∣k−1)) (7) 

In the ROS ecosystem, the robot_localization or robot_pose_ekf packages encapsulate this EKF 

workflow. They fuse multi-source inputs—such as /odom (odometry), /imu/data (IMU), and /gps/fix 

(GPS)—by mapping each topic to the relevant state variables and specifying noise covariances in a 

YAML configuration file. These packages support dynamic reconfiguration, allowing filter 

parameters to be tuned at runtime to match the operating environment, thereby enhancing 

localization accuracy and robustness. Through EKF fusion, sensor data are optimally weighted in 

both time and space. If one sensor becomes unreliable or fails, the system can rely on the remaining 

sensors to maintain stable localization, meeting the high availability requirements of industrial 

robots in complex settings[10]. 

3.2. Adaptive Monte Carlo Localization (AMCL) Algorithm Analysis 

Adaptive Monte Carlo Localization (AMCL) in ROS implements a particle filter approach to 

estimate the robot’s pose on a known map by randomly sampling and weighting possible poses. The 

AMCL algorithm comprises three main steps: prediction (motion update), measurement update, and 

resampling. Under the motion model, each particle {xt−1
i , wt−1

i }i=1
N  is propagated according to the 

control input ut as shown in Formula 8: 

tixi
t ∼ p(xt ∣ ut, xt−1

i ) (8) 

Using lidar or depth camera observations zt, each predicted particle is assigned a weight: 

wt
i = p(zt ∣ xt

i) ,often modeled by a Gaussian likelihood as shown in Formula 9: 

p(zt ∣ xt
i) = exp(−

1

2
∑ (

zt,k−ẑt,k(xt
i)

σk
)2

k ) (9) 

Where zt,k is the actual measurement of the k-th beam, ẑt,k is the predicted measurement from 

the map at pose xt
i, and σk is the measurement noise standard deviation.Particles are resampled 

according to their weights, and the particle count NN is adaptively adjusted to maintain diversity 

when uncertainty grows and to reduce computational load upon convergence. AMCL computes the 

effective sample size as shown in Formula 10: 

Neff =
1

∑ (wt
i)2i

< Nthres (10) 

And triggers resampling when Neff falls below a predefined threshold Nthres.In ROS, the amcl 

package provides a complete implementation of this algorithm. Users can configure the laser 

measurement model, resampling threshold, and particle limits via parameters, making AMCL well 

suited for static or slowly varying industrial environments and enabling high-precision online 

localization. 

4. Experimental Design and Comparative Results 

4.1. Experimental Platform and Scenario Setup 

To comprehensively evaluate the performance of EKF and AMCL localization algorithms in 

industrial environments, we constructed a high-fidelity testbed under ROS Noetic. The mobile robot 

features a four-wheel differential drive chassis with a top speed of 1.5 m/s and is fitted with 

soft-compound wheels and high-friction tires to suit workshop floors. Its main compute unit is a 
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ZOTAC PC equipped with an 8th-generation Intel Core i7 processor, 16 GB of RAM, and a 500 GB 

SSD; in addition, an NVIDIA Xavier module on the robot handles vision processing and 

deep-learning inference. The sensor suite comprises a 16-beam 360° Robosense 3D LiDAR, an 

Intel RealSense D435 depth camera, and an Xsens MTi-300 IMU. Each sensor publishes data to 

ROS topics—/scan, /camera/depth, and /imu/data_raw—for point clouds, depth images, and inertial 

measurements respectively. Communication relies on an enterprise-grade 802.11ac dual-band Wi-Fi 

network, ensuring inter-node latency under 50 ms. On the software side, the robot and central 

workstation synchronize their clocks via Chrony. We use the Gmapping package to build a 0.05 

m-resolution occupancy grid map and the Robot Localization package to fuse odometry, IMU, and 

GPS (or Vicon ground-truth) data. All node parameters are managed centrally through the ROS 

Parameter Server, supporting dynamic reconfiguration of filter noise covariances and AMCL 

resampling thresholds in real time. 

The test scenarios cover three typical industrial settings: Open Area (10 m × 10 m): An 

obstacle-free, static environment to measure convergence speed and static localization accuracy. 

Rack-Obstructed Area: Multiple rows of metal racks and support columns arranged with 1.2 m-wide 

aisles, to assess the impact of multipath reflections and occlusions on localization error. Dynamic 

Disturbance Area: Random pedestrian traffic and moving carts introduced between the open and 

rack areas, simulating dynamic interference to evaluate each algorithm’s robustness to temporary 

sensor occlusion and its drift-recovery capability. Ground truth is provided by a Vicon 

motion-capture system at 10 Hz with sub-centimeter accuracy. Evaluation metrics include 

root-mean-square error (RMSE), maximum error, convergence time (time to first reach error below 

0.1 m), and drift-recovery time in dynamic conditions. This experimental setup enables a systematic, 

quantitative comparison of EKF and AMCL accuracy and stability under challenging industrial 

conditions. 

4.2. Localization Accuracy and Robustness Comparison 

In the Open Area, Rack-Obstructed Area, and Dynamic Disturbance Area, we collected 

localization data for EKF and AMCL and compared static accuracy, error variability, maximum 

error, convergence time, drift recovery, and recovery success rate. 

 

Figure 3: Open Area Results 
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As the Figure 3 shown, AMCL’s particle-filter approach yields a lower mean error (0.038 m vs. 

0.045 m) and smaller variability (σ=0.010 m vs. 0.012 m), as reflected in its tighter median (0.036 

m). Both methods remain well below 0.1 m maximum error, but AMCL demonstrates marginally 

higher precision and consistency in obstacle-free conditions. 

 

Figure 4: Rack-Obstructed Area Results 

As the Figure 4 shown, under frequent multipath reflections and occlusions, EKF converges 

faster (1.8 s vs. 2.5 s), yet exhibits higher variability (σ=0.018 m). AMCL’s resampling produces a 

lower average drift (0.155 m vs. 0.180 m) and tighter error distribution, with a median 

post-convergence error of 0.053 m. 

Table 1: Dynamic Disturbance Area Results 

Algorithm 
Average Recovery 

Time (s) 

Recovery Success 

Rate (%) 

Pre-Recovery 

Max Drift (m) 

Post-Recovery 

RMSE (m) 
Std. Dev. (m) 

EKF 3.2 100 0.240 0.074 0.020 

AMCL 4.1 95 0.310 0.068 0.017 

As the Table 1, in the presence of random pedestrian and cart interference, EKF recovers more 

quickly (3.2 s vs. 4.1 s) and maintains a perfect recovery success rate. However, it experiences 

larger pre-recovery drift (0.240 m) compared to AMCL (0.310 m), and its post-recovery RMSE 

(0.074 m) is slightly higher. AMCL, while showing a 95 % success rate, achieves finer localization 

after resampling, with lower variability (σ=0.017 m). 

Across all scenarios, AMCL consistently delivers superior static accuracy and tighter error 

distributions. EKF excels in rapid convergence and guaranteed recovery, making it more robust for 

dynamic occlusions. The extended tables reveal that AMCL’s lower standard deviations and 

medians underscore its precision, whereas EKF’s faster response times and perfect recovery success 

rate highlight its reliability under abrupt sensor dropouts. A hybrid approach—leveraging EKF for 

initial fast convergence and switching to AMCL once the environment stabilizes—remains the most 

effective strategy to balance speed, accuracy, and robustness in complex industrial settings. 

5. Problem Analysis and Optimization Suggestions 

5.1. Applicability and Limitations of Current Algorithms 

In complex industrial environments, EKF and AMCL each offer distinct strengths and face 
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inherent limitations. EKF relies on a precise kinematic model and accurately tuned process-noise 

covariance; when odometry and IMU data remain continuously available, it converges rapidly and 

provides real-time estimates, demonstrating fault tolerance to dynamic occlusions or brief sensor 

dropouts. However, if the sensor model does not match reality or the kinematic parameters are 

miscalibrated, EKF accumulates drift and is sensitive to non-Gaussian observation noise. By 

contrast, AMCL uses a particle-filter approach to sample and resample discrete pose hypotheses 

without depending on an exact motion model. It can quickly determine the global pose during 

startup or in well-structured maps and maintains high accuracy in static or slowly changing 

environments. Its performance, however, hinges on map fidelity and consistent laser readings: 

multipath reflections or repetitive floor textures may cause particle weights to collapse into local 

minima, slowing convergence. Furthermore, balancing particle count against computational load 

complicates parameter tuning, and the resampling delay under dynamic obstacles can impair 

short-term robustness. In summary, EKF suits low-latency, continuously moving applications but is 

constrained by model errors and noise assumptions; AMCL excels in structured settings requiring 

high precision but demands static environments and substantial compute resources. In practice, one 

should choose or combine these algorithms according to scene characteristics and system goals to 

achieve an optimal trade-off among accuracy, responsiveness, and robustness. 

5.2. Feasible Optimization Directions 

To enhance both accuracy and robustness of a ROS-based localization system for mobile 

industrial robots in challenging settings, we propose the following improvements that leverage the 

strengths of EKF and AMCL while mitigating their weaknesses. 

1) Multi-Stage Hybrid Localization 

An EKF is employed during system startup or scene transitions to ensure rapid convergence. 

Leveraging high-rate odometry and IMU predictions, EKF delivers an initial pose estimate within 

acceptable error bounds when entering unknown or highly dynamic areas. Once the robot reaches a 

relatively steady state, switch dynamically to AMCL, whose high-resolution grid-map sampling 

refines static accuracy. A further extension runs EKF and AMCL in parallel, fusing their outputs via 

Kalman gains or weight coefficients to balance reliability in real time across varied conditions. 

2) Visual SLAM Augmentation 

In regions with uniform textures or severe multipath reflections—where laser data may 

degrade—introduce a lightweight visual SLAM pipeline (ORB-SLAM2, LDSO, or RTAB-Map). 

Extract environmental features from a depth camera’s imagery to build dense or semi-dense point 

clouds and keyframe maps. The system fuses visual SLAM pose estimates with AMCL’s 

laser-based results to compensate for lidar blind spots (e.g., transparent or reflective obstacles) and 

leverage visual texture for improved global consistency. 

3) Deep-Learning–Based Semantic Aiding 

The system deploys lightweight on-board semantic segmentation (ENet, BiSeNet) or 

object-detection (YOLOv5, MobileNet-SSD) networks to identify critical industrial landmarks—

such as support columns, rack ends, and safety signs—and incorporates their pixel coordinates as 

semantic priors into the observation model. Matching these semantic features against the dense 

point cloud or occupancy grid enhances the measurement model for both EKF and AMCL, 

bolstering stability in repeated-texture and dynamic-obstacle scenarios. 

4) Online Adaptive Parameter Tuning 

Both EKF and AMCL critically depend on filter parameters (process and observation noise 

covariances, particle count, resampling thresholds). Manual calibration is time-consuming and often 

incomplete. The system introduces online optimization techniques—such as Bayesian optimization, 
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particle swarm optimization, or genetic algorithms—to dynamically adjust noise covariances and 

resampling parameters in real time based on localization error and observation-consistency metrics. 

Alternatively, a sliding window of ground-truth comparisons can be used to automatically correct 

IMU calibration errors and laser-measurement models, allowing the system to continuously “learn” 

optimal parameters during operation. 

5) Distributed Mapping and Localization Services 

For large-scale, multi-robot deployments—such as extensive factory floors or warehouses 

—single-host loading of a high-resolution global map can strain compute and memory. Partition the 

map into subregions hosted on edge servers and use ROS 2’s DDS or ROS Bridge to request topics 

and services across the network. Robots dynamically load only their current subregion’s map and 

AMCL instance, while distributed nodes manage seamless submap transitions and global 

consistency, ensuring a common reference frame and supporting cooperative localization and 

collision avoidance. 

6) Integration of External High-Precision Systems 

The system deploys Ultra-Wideband (UWB) indoor-positioning anchors, visual fiducials, or 

Bluetooth beacons as auxiliary observations in areas demanding centimeter-level accuracy. 

High-frequency updates from these systems can correct EKF or AMCL drift and rapidly recover 

from localization failures, boosting overall system availability. 

7) End-to-End Hardware/Software Co-Optimization 

On the hardware side, the system employs low-noise, high-sensitivity IMUs and LiDARs with 

multipath-filtering capabilities, while optimizing sensor placement and vibration isolation to 

enhance measurement stability. On the software side, critical ROS nodes are executed on a real-time 

operating system (RTOS) or configured with Xenomai patches to ensure deterministic latency. In 

addition, quality-of-service (QoS) policies and redundant network paths are implemented to 

minimize packet loss and jitter, improving the overall robustness of data transmission.Through 

holistic co-optimization, substantial gains in accuracy and robustness can be achieved in highly 

dynamic, complex industrial settings, laying the groundwork for reliable autonomous inspection, 

material transport, and human–robot collaboration. 

6. Future Outlook 

As industrial intelligence and digital transformation accelerate, ROS-based localization for 

mobile industrial robots will face both new opportunities and challenges. Beyond LiDAR, vision, 

and IMU, future systems may incorporate ultrasound, millimeter-wave radar, and IoT 

environmental sensors (temperature, vibration) into a unified framework. Semantic segmentation 

and scene-understanding models can extract high-level features, constructing multimodal 

spatiotemporal networks that improve localization stability and precision in complex mixed 

environments. With 5G and edge-cloud platforms, robots can combine local computation with 

remote resources to access large-scale, high-precision maps and deep-learning models in real time. 

Digital-twin simulations in the cloud will enable algorithm validation and rapid deployment of 

updates, drastically shortening iteration cycles. In large workshops or logistics hubs, single-robot 

localization is insufficient. ROS 2’s DDS communication and semantic-map sharing will allow 

multiple robots to collaboratively build and share a global map. Edge inference and distributed 

filtering algorithms will synchronize pose estimates, increasing operational efficiency and fault 

tolerance. Deep reinforcement learning can automatically tune filter parameters and resampling 

strategies, while meta-learning approaches enable quick adaptation to new environments. Over time, 

robots will accumulate experience to self-optimize their localization performance, achieving “zero” 

or “minimal” manual parameterization. As the ROS ecosystem matures and standards like OPC UA 
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and ROS-Industrial advance, localization modules will become more robust and reusable. Seamless, 

cross-vendor integration will enable deployment of high-reliability, safety-certified localization 

solutions across diverse verticals—pharmaceutical production, food processing, hazardous- 

environment operations—propelling intelligent manufacturing to the next level. 

7. Conclusion 

This paper presented a systematic comparison of two mainstream ROS localization 

algorithms—Extended Kalman Filter (EKF) and Adaptive Monte Carlo Localization 

(AMCL)—across open, obstructed, and dynamically disturbed industrial scenarios. Experimental 

results demonstrate EKF’s advantage in rapid convergence and dynamic recovery, while AMCL 

achieves superior static accuracy in structured environments. To address their respective limitations, 

we proposed multi-stage hybrid strategies, visual and semantic augmentations, and online adaptive 

tuning. Our analysis and recommendations offer practical guidance for implementing high-precision, 

robust localization systems in real-world industrial robotics applications. 
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