Journal of Engineering Mechanics and Machinery (2025) DOI: 10.23977/jemm.2025.100204
Clausius Scientific Press, Canada ISSN 2371-9133 Vol. 10 Num. 2

Analysis of Localization Algorithms for ROS-Based
Mobile Industrial Robots

Yaping Wu
Beijing ETZD Technology Co., Ltd., Beijing, China

Keywords: ROS; Industrial Robot; Localization Algorithm; AMCL; EKF; Multi-Sensor
Fusion; Lidar; SLAM

Abstract: With the advancement of intelligent manufacturing and flexible automation,
mobile industrial robots are increasingly being deployed in scenarios such as material
handling, inspection, and collaborative operations. As one of the core technologies for
mobile robots, the localization system has a direct impact on the stability and accuracy of
path planning and task execution. This paper, built on the Robot Operating System (ROS)
platform, systematically reviews and analyzes the implementation mechanisms and
applicable scenarios of mainstream localization algorithms, with a focus on the
performance characteristics of the Extended Kalman Filter (EKF) and Adaptive Monte
Carlo Localization (AMCL) in industrial settings. By constructing an experimental
platform that fuses multiple sensors—Iidar, IMU, and wheel odometry—a series of tests
comparing localization accuracy and robustness are conducted. We evaluate each
algorithm’s adaptability to complex conditions including dynamic occlusions, uniform
environmental textures, and multipath interference. The results indicate that AMCL
achieves higher positioning accuracy in static, structured environments, whereas EKF is
better suited to dynamic applications suffering from sensor drift and data latency. Finally,
we propose an optimization approach that integrates visual SLAM and deep-learning—
based feature extraction, offering guidance for designing highly reliable localization
systems for future industrial robots.

1. Introduction

Against the rapid rise of intelligent manufacturing and industrial automation, mobile industrial
robots—praised for their flexibility and efficiency—now underpin key operations like warehouse
logistics, inspection, and material handling. Reliable localization and navigation are crucial, as they
directly impact path planning, obstacle avoidance, and overall system intelligence. Advances in
sensors and computing have shifted localization from simple wheel-odometry to multi-sensor fusion
frameworks that combine lidar, IMU, vision, and prebuilt maps. ROS has become the standard
development platform, offering modular, open-source implementations of EKF, AMCL, and SLAM.
However, real-world workshops pose challenges—complex layouts, occlusions, repetitive textures,
and dynamic disturbances—that can induce drift or failure, all under tight real-time and resource
constraints. This paper systematically analyzes and compares EKF and AMCL on a ROS-based
testbed with lidar, IMU, and odometry, aiming to guide the design of robust, high-performance
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localization systems for industrial robots.
2. ROS System Architecture and Localization Module Principles
2.1. ROS Architecture and Its Deployment for Mobile Robots

Industrial workshop environments typically involve multiple heterogeneous sensors, dynamic
disturbances, and strict real-time constraints. Under these conditions, system architecture must
support modular deployment, information decoupling, and multi-robot collaboration. A central
workstation runs the ROS Master and hosts key nodes (Mission Planner, Path Planner, Sensor
Controller, etc.). It communicates—via wired or wireless links—with various end devices, issuing
navigation and control commands to unmanned aerial vehicles (UAVs) and unmanned ground
vehicles (UGVs), while collecting real-time data from payload sensors (temperature, humidity,
illumination, CO: concentration, etc.) on Raspberry Pi edge devices. Sensor data are first
preprocessed and transformed into a common coordinate frame by the Sensor Controller node
(using ROS TF), then published over ROS topics to the path-planning and localization modules[1].
The Path Planner node fuses the preloaded map with odometry and IMU data to generate global and
local trajectories, which are dispatched to individual robots for execution. The Mission Planner
handles high-level task scheduling and multi-robot coordination, dynamically adjusting priorities
and routes based on state feedback from subsystems as shown in figure 1[2].
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Figure 1: Diagram of the overall system architecture

Within this architecture, the localization module may operate as part of the Path Planner or run
independently on each robot or edge device. It exposes ROS services and actions for
starting/stopping localization, querying parameters, and dynamic reconfiguration, thereby providing
flexible, reliable support for rapidly changing layouts and multi-task switching in industrial
settings|[3].

ROS achieves modularity and decoupling through distributed nodes and a publish/subscribe
messaging system. Deployment begins by launching the ROS Master on the central workstation,
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which acts as the registration center and message broker. On each subsystem (UAV, UGV,
Raspberry Pi), nodes for localization, control, and sensor drivers are launched, with configurations
loaded from the ROS Parameter Server[4]. Nodes exchange data via predefined topics—such as
/scan for lidar, /odom for odometry, /imu/data for IMU readings, and /tf for coordinate
transforms—to ensure spatiotemporal alignment across all sensors.ROS services and actions
provide synchronous calls and long-running task management. For instance, the localization module
may offer a /amcl/get_pose service to request the current pose or use an action server to stream
global path-tracking feedback. In multi-robot scenarios, ROS namespaces isolate topics and
services per robot, simplifying management and log separation while meeting industrial
requirements for reliability and determinism[5].

2.2. ROS Integration of Localization Hardware and Modules

Industrial environments demand both high-performance computing and robust multi-sensor
perception. As shown in Figure 2, the robot’s hardware platform comprises a ZOTAC PC (8th-gen
Intel Core i7, 16 GB RAM, 500 GB SSD), an NVIDIA Xavier edge module, and core sensors such
as a 360 16-beam Robosense 3D lidar, an Intel RealSense D435 depth camera, and an Xsens
MTi-300 IMU. A 4G/Wi-Fi router ensures low-latency communication with the central
controller[6].
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Figure 2: Schematic diagram of the mobile robot hardware platform and multi-sensor integration

Within ROS, each physical device is represented by one or more driver nodes, which publish
relevant data on topics or expose services. Specifically:Lidar (Robosense-16) is driven by the
rslidar_ros or robosense_driver package, publishing point clouds to /scan or /points and aligning its
frame via TF.Depth Camera (RealSense D435) runs the realsense2_camera node group, outputting
raw depth images (/camera/depth/image_raw), color images (/camera/color/image_raw), and
camera intrinsics/extrinsics for visual SLAM or feature-based localization.IMU uses the imu_driver
to publish raw accelerometer and gyroscope data to /imu/data_raw, which are fused with odometry
(/odom) in the robot localization or robot pose ekf package to improve short-term motion
estimates.Compute Units distribute tasks: the ZOTAC PC handles global localization and planning
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(gmapping, amcl, move_base), while the Xavier module performs real-time vision processing and
deep learning inference (e.g., YOLO object detection or visual odometry)[7].Communication
Module ensures all nodes register under a single ROS Master, enabling cross-network topic
forwarding (via multimaster_fkie or rosbridge) for remote monitoring and debugging.This
integration seamlessly aggregates multi-sensor data within the ROS ecosystem, providing
time-synchronized inputs for EKF, AMCL, or visual SLAM algorithms and enabling high-precision,
robust localization in industrial environments|[8].

3. Analysis of Mainstream ROS Localization Algorithms
3.1. Extended Kalman Filter (EKF) and Fusion-Based Localization

The Extended Kalman Filter (EKF) is a widely used multi-sensor fusion localization method in
ROS. Its core idea is to linearize both the system and observation models via a first-order Taylor
series expansion around the current state estimate and then apply the standard linear Kalman filter
equations at each time step to estimate the state and its covariance[9].The system state vector is
typically chosen to represent the robot’s planar pose and velocities, for example as shown in
Formula 1:

xk = [xyOvw]T (1)

Where (x,y,0) denote the robot’s position and orientation in the global frame, and v and ®
denote the linear and angular velocities, respectively.The state prediction uses a discrete-time
kinematic model ff, assuming control inputs of linear acceleration aka_k and angular acceleration a
as shown in Formula 2:

[Xk-1 +Xp_q + vk_lcosek_lAt]
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Its Jacobian (state transition matrix) is as shown in Formula 3:
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The covariance prediction is as shown in Formula 4:

Peii—1 = FiPeo1i1Fr + Qi (4)

Where Qy is the process noise covariance matrix.Given an observation model hh, the sensor
measurement vector z, may include odometry, IMU angular velocities, GPS positions as shown in
Formula 5:

Zi = h(Xyr-1) + v (5)
Linearizing h around the predicted state yields the observation matrix as shown in Formula 6:

oh
Hi = >~ Xik-1 (6)

The Kalman gain is computed as Ky = Py_qHp (HiPer—1Hp + Ry) — 1where Ry is the
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observation noise covariance. The state and covariance updates as shown in Formula 7:

Xkik = Xijk-1 + Xk (Zk — h(Xk-1)) (7)
In the ROS ecosystem, the robot_localization or robot_pose_ekf packages encapsulate this EKF
workflow. They fuse multi-source inputs—such as /odom (odometry), /imu/data (IMU), and /gps/fix
(GPS)—by mapping each topic to the relevant state variables and specifying noise covariances in a
YAML configuration file. These packages support dynamic reconfiguration, allowing filter
parameters to be tuned at runtime to match the operating environment, thereby enhancing
localization accuracy and robustness. Through EKF fusion, sensor data are optimally weighted in
both time and space. If one sensor becomes unreliable or fails, the system can rely on the remaining
sensors to maintain stable localization, meeting the high availability requirements of industrial
robots in complex settings[10].

3.2. Adaptive Monte Carlo Localization (AMCL) Algorithm Analysis

Adaptive Monte Carlo Localization (AMCL) in ROS implements a particle filter approach to
estimate the robot’s pose on a known map by randomly sampling and weighting possible poses. The
AMCL algorithm comprises three main steps: prediction (motion update), measurement update, and
resampling. Under the motion model, each particle {xi_;,wi_,}N, is propagated according to the
control input u, as shown in Formula 8:

tixf ~ p(x | upxi_1) (8)

Using lidar or depth camera observations z, each predicted particle is assigned a weight:
wi = p(z; | x{) ,often modeled by a Gaussian likelihood as shown in Formula 9:

. 1 _5 i
p(z | xD) = exp(— 3 Du(EZEE2) ()

Where z;) is the actual measurement of the k-th beam, Zy is the predicted measurement from
the map at pose xi, and o is the measurement noise standard deviation.Particles are resampled
according to their weights, and the particle count NN is adaptively adjusted to maintain diversity
when uncertainty grows and to reduce computational load upon convergence. AMCL computes the
effective sample size as shown in Formula 10:

Nefr = #‘NDZ < Nipres (10)

And triggers resampling when N falls below a predefined threshold Nipres-IN ROS, the amcl

package provides a complete implementation of this algorithm. Users can configure the laser

measurement model, resampling threshold, and particle limits via parameters, making AMCL well

suited for static or slowly varying industrial environments and enabling high-precision online
localization.

4. Experimental Design and Comparative Results
4.1. Experimental Platform and Scenario Setup

To comprehensively evaluate the performance of EKF and AMCL localization algorithms in
industrial environments, we constructed a high-fidelity testbed under ROS Noetic. The mobile robot
features a four-wheel differential drive chassis with a top speed of 1.5 m/s and is fitted with
soft-compound wheels and high-friction tires to suit workshop floors. Its main compute unit is a
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ZOTAC PC equipped with an 8th-generation Intel Core i7 processor, 16 GB of RAM, and a 500 GB
SSD; in addition, an NVIDIA Xavier module on the robot handles vision processing and
deep-learning inference. The sensor suite comprises a 16-beam 360 Robosense 3D LiDAR, an
Intel RealSense D435 depth camera, and an Xsens MTi-300 IMU. Each sensor publishes data to
ROS topics—/scan, /camera/depth, and /imu/data_raw—for point clouds, depth images, and inertial
measurements respectively. Communication relies on an enterprise-grade 802.11ac dual-band Wi-Fi
network, ensuring inter-node latency under 50 ms. On the software side, the robot and central
workstation synchronize their clocks via Chrony. We use the Gmapping package to build a 0.05
m-resolution occupancy grid map and the Robot Localization package to fuse odometry, IMU, and
GPS (or Vicon ground-truth) data. All node parameters are managed centrally through the ROS
Parameter Server, supporting dynamic reconfiguration of filter noise covariances and AMCL
resampling thresholds in real time.

The test scenarios cover three typical industrial settings: Open Area (10 m > 10 m): An
obstacle-free, static environment to measure convergence speed and static localization accuracy.
Rack-Obstructed Area: Multiple rows of metal racks and support columns arranged with 1.2 m-wide
aisles, to assess the impact of multipath reflections and occlusions on localization error. Dynamic
Disturbance Area: Random pedestrian traffic and moving carts introduced between the open and
rack areas, simulating dynamic interference to evaluate each algorithm’s robustness to temporary
sensor occlusion and its drift-recovery capability. Ground truth is provided by a Vicon
motion-capture system at 10 Hz with sub-centimeter accuracy. Evaluation metrics include
root-mean-square error (RMSE), maximum error, convergence time (time to first reach error below
0.1 m), and drift-recovery time in dynamic conditions. This experimental setup enables a systematic,
quantitative comparison of EKF and AMCL accuracy and stability under challenging industrial
conditions.

4.2. Localization Accuracy and Robustness Comparison

In the Open Area, Rack-Obstructed Area, and Dynamic Disturbance Area, we collected
localization data for EKF and AMCL and compared static accuracy, error variability, maximum
error, convergence time, drift recovery, and recovery success rate.
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Figure 3: Open Area Results
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As the Figure 3 shown, AMCL’s particle-filter approach yields a lower mean error (0.038 m vs.
0.045 m) and smaller variability (6=0.010 m vs. 0.012 m), as reflected in its tighter median (0.036
m). Both methods remain well below 0.1 m maximum error, but AMCL demonstrates marginally
higher precision and consistency in obstacle-free conditions.

Rack-Obstructed Area Localization Performance
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Figure 4: Rack-Obstructed Area Results

As the Figure 4 shown, under frequent multipath reflections and occlusions, EKF converges
faster (1.8 s vs. 2.5 s), yet exhibits higher variability (6=0.018 m). AMCL’s resampling produces a
lower average drift (0.155 m vs. 0.180 m) and tighter error distribution, with a median
post-convergence error of 0.053 m.

Table 1: Dynamic Disturbance Area Results

Average Recovery

Recovery Success

Pre-Recovery

Post-Recovery

Algorithm Time (s) Rate (%) Max Drift (m) | RMSE (m) | St Dev.(m)
EKF 32 100 0.240 0.074 0.020
AMCL 41 95 0.310 0.068 0.017

As the Table 1, in the presence of random pedestrian and cart interference, EKF recovers more
quickly (3.2 s vs. 4.1 s) and maintains a perfect recovery success rate. However, it experiences
larger pre-recovery drift (0.240 m) compared to AMCL (0.310 m), and its post-recovery RMSE
(0.074 m) is slightly higher. AMCL, while showing a 95 % success rate, achieves finer localization
after resampling, with lower variability (6=0.017 m).

Across all scenarios, AMCL consistently delivers superior static accuracy and tighter error
distributions. EKF excels in rapid convergence and guaranteed recovery, making it more robust for
dynamic occlusions. The extended tables reveal that AMCL’s lower standard deviations and
medians underscore its precision, whereas EKF’s faster response times and perfect recovery success
rate highlight its reliability under abrupt sensor dropouts. A hybrid approach—Ileveraging EKF for
initial fast convergence and switching to AMCL once the environment stabilizes—remains the most
effective strategy to balance speed, accuracy, and robustness in complex industrial settings.

5. Problem Analysis and Optimization Suggestions
5.1. Applicability and Limitations of Current Algorithms

In complex industrial environments, EKF and AMCL each offer distinct strengths and face
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inherent limitations. EKF relies on a precise kinematic model and accurately tuned process-noise
covariance; when odometry and IMU data remain continuously available, it converges rapidly and
provides real-time estimates, demonstrating fault tolerance to dynamic occlusions or brief sensor
dropouts. However, if the sensor model does not match reality or the kinematic parameters are
miscalibrated, EKF accumulates drift and is sensitive to non-Gaussian observation noise. By
contrast, AMCL uses a particle-filter approach to sample and resample discrete pose hypotheses
without depending on an exact motion model. It can quickly determine the global pose during
startup or in well-structured maps and maintains high accuracy in static or slowly changing
environments. Its performance, however, hinges on map fidelity and consistent laser readings:
multipath reflections or repetitive floor textures may cause particle weights to collapse into local
minima, slowing convergence. Furthermore, balancing particle count against computational load
complicates parameter tuning, and the resampling delay under dynamic obstacles can impair
short-term robustness. In summary, EKF suits low-latency, continuously moving applications but is
constrained by model errors and noise assumptions; AMCL excels in structured settings requiring
high precision but demands static environments and substantial compute resources. In practice, one
should choose or combine these algorithms according to scene characteristics and system goals to
achieve an optimal trade-off among accuracy, responsiveness, and robustness.

5.2. Feasible Optimization Directions

To enhance both accuracy and robustness of a ROS-based localization system for mobile
industrial robots in challenging settings, we propose the following improvements that leverage the
strengths of EKF and AMCL while mitigating their weaknesses.

1) Multi-Stage Hybrid Localization

An EKF is employed during system startup or scene transitions to ensure rapid convergence.
Leveraging high-rate odometry and IMU predictions, EKF delivers an initial pose estimate within
acceptable error bounds when entering unknown or highly dynamic areas. Once the robot reaches a
relatively steady state, switch dynamically to AMCL, whose high-resolution grid-map sampling
refines static accuracy. A further extension runs EKF and AMCL in parallel, fusing their outputs via
Kalman gains or weight coefficients to balance reliability in real time across varied conditions.

2) Visual SLAM Augmentation

In regions with uniform textures or severe multipath reflections—where laser data may
degrade—introduce a lightweight visual SLAM pipeline (ORB-SLAM2, LDSO, or RTAB-Map).
Extract environmental features from a depth camera’s imagery to build dense or semi-dense point
clouds and keyframe maps. The system fuses visual SLAM pose estimates with AMCL’ s
laser-based results to compensate for lidar blind spots (e.g., transparent or reflective obstacles) and
leverage visual texture for improved global consistency.

3) Deep-Learning—Based Semantic Aiding

The system deploys lightweight on-board semantic segmentation (ENet, BiSeNet) or
object-detection (YOLOvV5, MobileNet-SSD) networks to identify critical industrial landmarks—
such as support columns, rack ends, and safety signs—and incorporates their pixel coordinates as
semantic priors into the observation model. Matching these semantic features against the dense
point cloud or occupancy grid enhances the measurement model for both EKF and AMCL,
bolstering stability in repeated-texture and dynamic-obstacle scenarios.

4) Online Adaptive Parameter Tuning

Both EKF and AMCL critically depend on filter parameters (process and observation noise
covariances, particle count, resampling thresholds). Manual calibration is time-consuming and often
incomplete. The system introduces online optimization techniques—such as Bayesian optimization,
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particle swarm optimization, or genetic algorithms—to dynamically adjust noise covariances and
resampling parameters in real time based on localization error and observation-consistency metrics.
Alternatively, a sliding window of ground-truth comparisons can be used to automatically correct
IMU calibration errors and laser-measurement models, allowing the system to continuously “learn”
optimal parameters during operation.

5) Distributed Mapping and Localization Services

For large-scale, multi-robot deployments—such as extensive factory floors or warehouses
—single-host loading of a high-resolution global map can strain compute and memory. Partition the
map into subregions hosted on edge servers and use ROS 2’s DDS or ROS Bridge to request topics
and services across the network. Robots dynamically load only their current subregion’s map and
AMCL instance, while distributed nodes manage seamless submap transitions and global
consistency, ensuring a common reference frame and supporting cooperative localization and
collision avoidance.

6) Integration of External High-Precision Systems

The system deploys Ultra-Wideband (UWB) indoor-positioning anchors, visual fiducials, or
Bluetooth beacons as auxiliary observations in areas demanding centimeter-level accuracy.
High-frequency updates from these systems can correct EKF or AMCL drift and rapidly recover
from localization failures, boosting overall system availability.

7) End-to-End Hardware/Software Co-Optimization

On the hardware side, the system employs low-noise, high-sensitivity IMUs and LiDARs with
multipath-filtering capabilities, while optimizing sensor placement and vibration isolation to
enhance measurement stability. On the software side, critical ROS nodes are executed on a real-time
operating system (RTOS) or configured with Xenomai patches to ensure deterministic latency. In
addition, quality-of-service (QoS) policies and redundant network paths are implemented to
minimize packet loss and jitter, improving the overall robustness of data transmission.Through
holistic co-optimization, substantial gains in accuracy and robustness can be achieved in highly
dynamic, complex industrial settings, laying the groundwork for reliable autonomous inspection,
material transport, and human-robot collaboration.

6. Future Outlook

As industrial intelligence and digital transformation accelerate, ROS-based localization for
mobile industrial robots will face both new opportunities and challenges. Beyond LiDAR, vision,
and IMU, future systems may incorporate ultrasound, millimeter-wave radar, and loT
environmental sensors (temperature, vibration) into a unified framework. Semantic segmentation
and scene-understanding models can extract high-level features, constructing multimodal
spatiotemporal networks that improve localization stability and precision in complex mixed
environments. With 5G and edge-cloud platforms, robots can combine local computation with
remote resources to access large-scale, high-precision maps and deep-learning models in real time.
Digital-twin simulations in the cloud will enable algorithm validation and rapid deployment of
updates, drastically shortening iteration cycles. In large workshops or logistics hubs, single-robot
localization is insufficient. ROS 2’s DDS communication and semantic-map sharing will allow
multiple robots to collaboratively build and share a global map. Edge inference and distributed
filtering algorithms will synchronize pose estimates, increasing operational efficiency and fault
tolerance. Deep reinforcement learning can automatically tune filter parameters and resampling
strategies, while meta-learning approaches enable quick adaptation to new environments. Over time,
robots will accumulate experience to self-optimize their localization performance, achieving “zero”
or “minimal” manual parameterization. As the ROS ecosystem matures and standards like OPC UA
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and ROS-Industrial advance, localization modules will become more robust and reusable. Seamless,
cross-vendor integration will enable deployment of high-reliability, safety-certified localization
solutions across diverse verticals—pharmaceutical production, food processing, hazardous-
environment operations—propelling intelligent manufacturing to the next level.

7. Conclusion

This paper presented a systematic comparison of two mainstream ROS localization
algorithms—Extended Kalman Filter (EKF) and Adaptive Monte Carlo Localization
(AMCL)—across open, obstructed, and dynamically disturbed industrial scenarios. Experimental
results demonstrate EKF’s advantage in rapid convergence and dynamic recovery, while AMCL
achieves superior static accuracy in structured environments. To address their respective limitations,
we proposed multi-stage hybrid strategies, visual and semantic augmentations, and online adaptive
tuning. Our analysis and recommendations offer practical guidance for implementing high-precision,
robust localization systems in real-world industrial robotics applications.
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