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Abstract: Artificial intelligence is anticipated to play a crucial role in shaping the future of 

education and academic research. Using a mechanical testing course as a case study, this 

paper illustrates how AI can be effectively integrated into engineering education by 

examining various AI methodologies through the application of tool wear prediction. In 

predictive modelling, commonly used intelligent algorithms mainly come from traditional 

machine learning techniques, such as support vector machines (SVM) and random forests, 

as well as deep learning methods like long short-term memory (LSTM) and gated recurrent 

units (GRU). Traditional models generally rely on manual feature extraction, which provides 

a degree of interpretability but often falls short in capturing the dynamic characteristics of 

time-series data. This study assesses the performance of several deep learning algorithms in 

predicting tool wear. The CNN-LSTM hybrid model consistently outperformed other models 

across all evaluation metrics. Specifically, compared to the GRU model, it reduced RMSE 

by 42.07% and MAE by 52.06%, while improving R² by 4.43%. When compared to the 

standalone LSTM model, the CNN-LSTM model achieved a 17.72% reduction in RMSE 

and a 42.25% decrease in MAE, along with a 2.97% increase in R². These results indicate 

that the CNN-LSTM architecture successfully combines CNN’s proficiency in automatic 

local feature extraction with LSTM’s capacity to model long-term temporal dependencies, 

thereby providing a highly effective and accurate method for tool wear prediction. 

1. Introduction 

At present, AI technology has been extensively integrated into higher education teaching. However, 

effectively enabling students to grasp the industrial applications of AI technology remains an urgent 

challenge. This paper addresses this issue by using the cutting tool—a key component that is highly 

susceptible to wear during machining—as a case study to illustrate the integration of AI into both 

production and education. The condition of the cutting tool directly influences machining quality, 

efficiency, and cost. Particularly when machining difficult-to-cut materials, tool wear accelerates 

significantly. Severe wear can lead to a sharp increase in cutting forces, vibration, and temperature, 

which compromises machining accuracy and surface quality, and may even result in part rejection or 

equipment damage [1]. A conservative tool change strategy typically leads to a relatively low 
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utilization rate of tool life, ranging from 50% to 80% [2], and increase the downtime (accounting for 

more than 20%) [3]. Implementing tool condition monitoring and wear prediction enables timely tool 

replacement, thereby enhancing processing efficiency and maintaining product quality. Research 

indicates that the adoption of a tool condition monitoring system can reduce production costs by 10% 

to 40% [4]. Consequently, achieving accurate prediction of tool wear is of considerable engineering 

significance for improving both production efficiency and product quality. 

Traditionally, tool wear prediction has mainly relied on manual evaluation by experienced 

personnel, which often falls short in ensuring high precision. With recent technological advancements, 

data-driven approaches have gained increasing prominence. However, two major challenges persist 

in real-world applications. First, feature extraction is typically based on manually designed features 

and domain expertise, making the process time-consuming and susceptible to subjectivity. These 

manually derived features are often generic indicators that fail to effectively capture the underlying 

dynamic patterns of tool wear progression, thereby limiting the model's generalization capability. 

Second, tool wear is inherently a temporal process influenced by historical operational conditions. 

Many conventional shallow machine learning methods or feedforward neural networks struggle to 

model long-term temporal dependencies, which compromises the accuracy and reliability of wear 

prediction. 

To address the aforementioned challenges, this paper proposes an intelligent tool wear monitoring 

method based on the CNN-LSTM algorithm. This method directly acquires the original time-series 

signals generated during machining through multiple sensors. A one-dimensional convolutional 

neural network (CNN) is then employed to automatically extract deep features from these signals, 

eliminating the need for the labor-intensive process of traditional manual feature extraction. The 

resulting feature sequences are subsequently fed into a long short-term memory network (LSTM), 

which captures the temporal dependencies inherent in the tool wear process. Finally, a fully connected 

layer is utilized to achieve precise prediction of the tool wear amount. By integrating the feature 

extraction capability of CNN with the temporal modeling strength of LSTM, the proposed method 

constructs an end-to-end intelligent monitoring framework that significantly enhances both prediction 

accuracy and model robustness. 

2. Intelligent Algorithm for Predicting Tool Wear 

2.1 Comparison of the Advantages and Disadvantages of Prediction Algorithms 

In research on tool wear prediction, the intelligent algorithms employed can generally be 

categorized into two main types: traditional machine learning methods and deep learning approaches. 

These categories differ significantly in terms of feature processing, model capabilities, and the 

scenarios in which they are most effectively applied. 

Conventional machine learning approaches, including Support Vector Machines (SVM), Random 

Forests, and Gradient Boosting Trees (such as XGBoost and LightGBM), are largely dependent on 

the precision of manually engineered features. These methods offer several benefits, such as a 

straightforward model architecture, efficient training processes, strong generalization capabilities 

even when data samples are scarce, and a high degree of interpretability. For instance, decision tree-

based models can generate rankings of feature importance, offering insights into how various sensor 

features influence the assessment of wear conditions. Nevertheless, these techniques often fall short 

in capturing complex temporal dynamics and long-term dependencies inherent in the cutting process, 

and their effectiveness is closely tied to the quality of selected features. 

In contrast, deep learning approaches can automatically extract distinguishing features directly 

from raw sensor data, thereby significantly reducing the need for manual feature engineering. Notably, 

the LSTM network and the Gated Recurrent Unit (GRU) have become widely used for tool wear 
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prediction due to their strong capability in modeling temporal dependencies. These architectures are 

particularly effective in processing long sequential data, such as vibration and cutting force signals. 

However, deep learning models generally require a large amount of labeled training data, involve 

high computational costs, demand extensive training time, and pose challenges in hyperparameter 

tuning. 

In summary, traditional machine learning approaches are more appropriate for scenarios 

characterized by limited data availability, low feature dimensionality, and a high demand for model 

interpretability. In contrast, deep learning techniques demonstrate superior performance in processing 

large-volume, high-dimensional time series data. With sufficient computational resources, these 

methods can achieve more accurate forecasting results. 

2.2 The Algorithm Execution Process 

This paper proposes a tool wear monitoring method based on a CNN-LSTM architecture. 

Flowchart of intelligent tool wear monitoring based on CNN-LSTM is shown in Fig. 1. Original 

processing signals are collected through multiple sensors, and CNN is utilized to automatically extract 

relevant features. Subsequently, LSTM is applied to model the temporal dependencies within the 

extracted features, thereby enabling accurate prediction of the tool wear amount. By integrating the 

feature extraction capability of CNN with the temporal modeling strength of LSTM, this end-to-end 

framework significantly enhances both prediction accuracy and robustness. 

 

Fig.1 Flowchart of Intelligent Tool Wear Monitoring Method Based on CNN-LSTM. 

2.3 CNN-LSTM Methodology 

In this study, the data was obtained from a dataset provided during a data competition hosted by 

the PHM Society in 2010. The dataset was collected using a multi-sensor system that captured high-

frequency raw signals throughout the milling process, with an initial sampling rate of up to 50 kHz. 

To improve the accuracy and reliability of the subsequent analysis, a systematic preprocessing 

procedure was implemented. First, unstable signal segments at the beginning and end of the cutting 

process were identified and removed using the upper quartile (Q3) threshold, ensuring that only high-

quality signal segments under stable cutting conditions were retained, as shown in Fig. 2. 

Subsequently, to strike a balance between data volume and signal fidelity, the dataset was 

downsampled at a ratio of 1:10, reducing the sampling rate to 5 kHz. This downsampling step 

significantly reduced storage and computational requirements while preserving the essential 
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characteristics of the original signals. 

 

Fig.2 Before and after eliminating invalid data 

To further enhance data quality, this study employed the Hampel filter to handle signal outliers. 

Any data point exceeding a threshold defined as three times the standard deviation was replaced with 

the mean value computed from a sliding window containing 1,000 adjacent points. This method 

effectively eliminated impulse noise and anomalous disturbances in the cutting signal, as shown in 

Fig. 3. Furthermore, wavelet packet decomposition was applied for additional noise reduction. The 

signal was decomposed into eight levels using the "db8" wavelet basis function, and the soft threshold 

was adaptively determined based on the median absolute deviation (MAD) criterion. This facilitated 

the precise identification and suppression of noise components. The denoised signal was subsequently 

reconstructed, as depicted in Fig. 4. This multi-stage preprocessing approach significantly improved 

signal quality, thereby establishing a robust foundation for subsequent tool wear monitoring and 

predictive modeling. 

 

Fig.3 The comparison before and after removing the intermediate abnormal data 

 

Fig.4 Schematic diagrams of raw data and denoised data 
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The preprocessed high-quality sensing signals are fed into a deeply integrated CNN–LSTM 

network architecture to enable end-to-end accurate prediction of tool wear. This process primarily 

involves two core stages: 

Initially, a one-dimensional convolutional neural network (1D-CNN) is employed to automatically 

extract in-depth features. The preprocessed time series signal is fed into the convolutional layer, 

where multiple one-dimensional convolutional kernels slide across the signal, detecting and 

identifying salient features and underlying patterns within the local waveform. This process 

effectively replaces traditional, expert-driven manual feature engineering. Subsequently, the pooling 

layer is applied to reduce the dimensionality of the feature maps generated by the convolution. While 

preserving the most critical feature information, this step also reduces the data size and enhances the 

spatial invariance of the extracted features. 

Subsequently, the feature sequence extracted by the Convolutional Neural Network (CNN) is fed 

into the LSTM to model its temporal dependencies. Leveraging its unique gating mechanism, the 

LSTM unit effectively captures long-term dependencies in the feature sequence over time and retains 

key state transitions during the tool wear process. The network processes the input sequentially 

through time steps, continuously updating and propagating the hidden state, ultimately producing an 

output that encapsulates the temporal dynamic information of the entire sequence. This output is then 

mapped to the predicted tool wear value via a fully connected layer. By integrating CNN's capability 

in automatic feature extraction with LSTM's strength in modeling long-term sequential dependencies, 

the hybrid CNN-LSTM model significantly enhances the accuracy and robustness of tool wear 

prediction. As illustrated in Figure 5, the CNN-LSTM model's predictions closely follow the true 

values, demonstrating strong tracking performance. 

To comprehensively verify the actual performance of the proposed model, this paper 

systematically conducts comparative experiments between the CNN-LSTM model, the GRU model, 

and the LSTM model. To more objectively evaluate the prediction capabilities of each model, this 

paper selects the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) as the main 

evaluation indicators, which are used to quantify the deviation between the model prediction results 

and the actual wear values. From the quantitative analysis results shown in Table 1, it can be seen that 

the CNN-LSTM model outperforms other comparison models in the three key indicators of MAE, 

RMSE, and R². The coincidence degree between its prediction results and the true measured values 

is higher, which fully indicates that the model performs outstandingly in the tool wear prediction task 

and has significant performance advantages. 

 

Fig.5 The prediction results of the CNN-LSTM model 
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Table 1 Comparison of prediction results of different data-driven models 

Schemes RMSE MAE R2 

GRU 8.0954 5.0882 0.9128 

LSTM 5.7010 4.2232 0.9257 

CNN-LSTM 4.6909 2.4390 0.9532 

3. Conclusion 

This study employs the CNN-LSTM algorithm for intelligent monitoring of tool wear states. By 

collecting raw time series data from various sensors—including vibration, cutting force, and acoustic 

emission—a one-dimensional CNN is utilized to automatically extract key features, thereby 

eliminating the complex and time-consuming manual feature extraction process typical of traditional 

methods. The proposed model first leverages CNN to capture spatial features within the sensor signals, 

followed by the application of a LSTM to model temporal dependencies in the time series, enabling 

accurate characterization of tool wear trends. Experimental results demonstrate that the method 

significantly outperforms traditional machine learning models in tool wear prediction, with a 

maximum reduction in MAE of nearly 80%. These findings further validate the feasibility and 

superiority of end-to-end deep learning approaches in tool condition monitoring, offering robust 

technical support for predictive maintenance in intelligent manufacturing systems. 

The application of AI technology in future tool wear prediction offers several key advantages. First, 

in terms of model lightweighting and structural optimization, improvements in network architecture 

and the adoption of more efficient convolutional and recurrent units can enhance generalization 

ability and computational efficiency under complex working conditions. Second, regarding multi-

modal sensing fusion, a deep fusion framework can be developed to integrate various signals—such 

as vibration and acoustic emission—for end-to-end joint feature extraction and wear state prediction. 

Finally, in terms of system integration and application promotion, combining embedded deployment 

with transfer learning techniques enables the extension of this method to diverse processing scenarios 

and equipment health management systems, thereby promoting the integrated innovation of 

perception and decision-making systems in intelligent manufacturing.  
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