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Abstract: Unmanned Surface Vehicles (USVs), as essential platforms for intelligent
maritime operations, rely heavily on efficient and reliable path planning to achieve
autonomous navigation. This paper systematically reviews major path planning methods for
USVs, including global planning approaches based on graph search and intelligent
optimization, as well as local planning techniques such as the Dynamic Window Approach,
Artificial Potential Field, and Rapidly-Exploring Random Tree. A comparative analysis of
these algorithms highlights their respective strengths and limitations, while summarizing
key directions of academic improvements. By integrating existing findings, this review
provides a structured perspective on the evolution of USV path planning methodologies and
their practical implications. Finally, future perspectives are summarized, including Al-
driven autonomous learning and generalization, multimodal perception and intelligent
decision-making integration, distributed cooperation and large-scale swarm control, etc.

1. Introduction

USVs have emerged as critical enablers of intelligent maritime operations, offering advantages
in persistence, safety, and cost-effectiveness over traditional manned vessels. Their successful
deployment in tasks such as long-term ocean observation, search and rescue, and cooperative patrol
relies heavily on robust autonomous navigation capabilities. Among the enabling technologies, path
planning plays a central role, as it determines how USVs generate feasible and safe trajectories
while addressing uncertain ocean environments, dynamic obstacles, and regulatory constraints.

In this context, path planning can be defined as the process of calculating an optimal path from a
starting point to a destination under environmental constraints, typically requiring obstacle
avoidance and the satisfaction of motion-related conditions such as kinematic feasibility and time
efficiency. This process is often supported by a multi-dimensional evaluation framework that
integrates geometric cost, motion compatibility, and safety redundancy, with coordinated analysis
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achieved through quantitative metrics and weight assignment. To this end, a wide range of
algorithmic approaches, such as graph search, sampling-based, and optimization methods,have been
developed.

To illustrate the fundamental concepts of path planning, Figure 1 provides a schematic diagram
of global and local paths for an USV. Building on this, the overall framework of USV path planning
methods is summarized in Figure 2, which highlights the classification into global and local
planning approaches, along with representative algorithms in each category.
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Figure 1 Ilustration of global and local path planning for an USV.
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Figure 2 Framework of USV Path Planning Methods.
2. Global Path Planning

Global path planning provides unmanned USVs with globally optimal or near-optimal routes. It
focuses on balancing computational efficiency with adaptability, while addressing constraints such
as dynamic obstacles, energy consumption, and regulatory requirements. In this paper, global path
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planning is systematically discussed from the perspectives of graph search algorithms, intelligent
optimization algorithms, and sampling-based methods, highlighting their advantages, limitations,
and improvement trends.

2.1. Path Planning Based on Graph Search

Graph search algorithms are path planning methods based on graph theory, using node traversal
and edge cost evaluation to explore the search space. Within a known topological map, they can
generate collision-free paths from the start to the goal. Among them, heuristic methods (e.g., A¥)
and minimum-cost methods (e.g., Dijkstra) are effective in computing globally optimal solutions. A
comparative analysis of Dijkstra and A* algorithms in terms of advantages, disadvantages, and
recent improvements is provided in Table 1.

Table 1 Comparison of Dijkstra Algorithm and A* Algorithm in path planning.

Algorithm Advantages Disadvantages Improvements in literature
Dijkstra Strong global High computational Energy-efficient optimization;
optimality; broad complexity; low environmental constraints
applicability efficiency in large- integration; dynamic obstacle
scale environments adaptation; multi-objective
optimization
A* Combines heuristic | Strongly depends on Path smoothing; binary tree
guidance with heuristic function; recursive search; hybrid A*—
efficiency; insufficient real-time | APF method; enhanced heuristic
guarantees capability in large- function; multi-vehicle
optimality scale environments cooperation

2.1.1. Dijkstra Algorithm

The Dijkstra algorithm, proposed by Dijkstra in 1959, is a classical shortest path search method
characterized by strong determinism and broad applicability. However, when applied to large-scale
graph searches, it suffers from limitations such as high computational complexity and insufficient
efficiency. In recent years, improvements of the Dijkstra algorithm in the field of unmanned surface
vehicles have primarily focused on: (1) energy-constrained optimization, (2) integration with
environmental models, (3) adaptation to dynamic obstacles, and (4) multi-objective optimization.

Singh et al. developed a constrained Dijkstra algorithm for USV path planning that integrates
static and moving obstacles as well as sea surface currents into the cost function, improving path
feasibility in dynamic maritime environments. While effective in simulations, its scalability and
real-time applicability to large-scale sea conditions remain unverified™. In another study, Niu et al.
proposed an energy-efficient path planning algorithm for USVs that integrates Dijkstra search with
Voronoi and visibility-based methods while explicitly modeling sea current effects and safety
distances from coastlines. Simulations on ten mission scenarios demonstrated improved endurance
and reduced energy consumption, although the method depends heavily on accurate prior
environmental data and may face challenges in real-time dynamic conditions!?.. Xing and Wu et al.
highlighted from a comprehensive perspective that the improvements of Dijkstra mainly focus on
multi-objective optimization and adaptability to dynamic environments, while emphasizing its trend
of integration with heuristic search methods®l.

2.1.2. A* algorithm
The A* algorithm, proposed by Hart et al., is a bounded-cost search method based on heuristic
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functions, which guarantees an optimal path under the condition of consistency. Compared with
traditional search algorithms, A* exhibits advantages in terms of optimality and computational
efficiency. However, its performance is highly dependent on the design of the heuristic function,
and it often suffers from high search overhead and insufficient real-time capability in large-scale
and complex environments.

Song et al. introduced a smoothed A* algorithm that incorporates curvature and continuity
constraints to generate feasible USV trajectories with reduced backtracking and sharp turns, but its
reliance on static grid resolution limits adaptability in dynamic environments®, To address this,
Chen et al. proposed a cooperative hunting method for multi-USVs based on an improved A
algorithm, introducing a path smoothing strategy considering the minimum turning radius and a
binary tree recursive search to enhance efficiency, while also applying a biomimetic formation
strategy to improve collaborative target capture in obstacle-rich environments®.Sang et al.
embedded artificial potential field (APF) constraints into the A* heuristic for formation navigation,
balancing trajectory safety and efficiency, yet further validation under real-time multi-vehicle
coordination remains needed.In summary, to meet the navigation requirements of USVs,
researchers have proposed various improvements to the A* algorithm, mainly focusing on: (1) path
smoothing, (2) intelligent integration, (3) cooperative extension, and (4) adaptation to dynamic
environments.

2.2. Intelligent Optimization Algorithms

Intelligent optimization algorithms have become one of the most widely applied approaches for
USV path planning in recent years, demonstrating strong global search capability and adaptability
in complex and dynamic environments. Compared with traditional graph search methods, they
perform more effectively in multi-objective, nonlinear, and uncertain scenarios. Representative
algorithms include genetic algorithms, ant colony optimization, and particle swarm optimization,
with research efforts primarily focusing on search strategy refinement, adaptive parameter
adjustment, and hybrid integration with other methods. To highlight their respective strengths,
weaknesses, and ongoing research directions, a comparative summary of GA, ACO, and PSO is
provided in Table 2.

Table 2 Comparison of three intelligent optimization algorithms for USV path planning.

Algorithm Advantages Disadvantages Improvements in literature
Genetic Strong global search Slow convergence; Improved convergence and
Algorithm capability; suitable reduced accuracy smoothness; feedback
(GA) for complex mechanism for collision
environments avoidance
Ant Colony High robustness; Slow convergence; Quantum ACO for faster
Optimization | supports parallelism | premature stagnation convergence; optimized
(ACQO) ACO for efficiency
Particle Swarm | Simple design; few Premature Adaptive PSO for reliability;
Optimization parameters convergence; weak hybrid PSO for offshore
(PSO) adaptability in areas
dynamic environments

2.2.1. Genetic Algorithm (GA)

The Genetic Algorithm (GA), first proposed by Holland, is an evolutionary optimization method
with strong global search ability, making it suitable for complex USV path planning. However,
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classical GA is often limited by slow convergence and reduced solution accuracy. Recent studies
have sought to address these limitations. Xin et al. proposed an improved genetic algorithm (GA)
for USV path planning that incorporates multi-domain inversion to increase offspring diversity and
a secondary fitness evaluation to eliminate suboptimal individuals. This strategy enhanced
convergence speed, robustness, and trajectory quality compared with conventional GA, but the
method remains computationally expensive and has yet to be validated in real-world dynamic
maritime environments . More recently, Gao et al. incorporated a feedback mechanism into a GA
framework to dynamically adjust crossover and mutation probabilities, thereby improving collision-
avoidance efficiency and path stability under hybrid map constraints. Nevertheless, the algorithm’s
performance remains sensitive to parameter tuning, and its scalability in highly dynamic maritime
conditions has not yet been systematically verified!!.

2.2.2. Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO), introduced by Dorigo in the 1990s, is a swarm intelligence
algorithm based on pheromone-guided search, widely applied in path planning. Although ACO
provides strong robustness and parallelism, it often converges slowly and risks premature stagnation.
Recent research has focused on improving its efficiency and adaptability for USV applications. Xia
et al. proposed an improved quantum ant colony algorithm (IQACA) for USV path planning that
jointly optimizes path length, energy consumption, smoothness, and safety. The method achieved
lower path costs and faster convergence than conventional ACO variants, though its effectiveness
under real-time dynamic sea conditions remains unverified %, More recently, Cui et al. developed
an optimized ant colony algorithm (OACA) for USV path planning that integrates energy
consumption and turning costs. By adopting non-uniform pheromone initialization, weighted
pheromone updating, and a penalty mechanism, the method accelerates convergence and avoids
premature stagnation, achieving more reliable and energy-efficient global paths than conventional
ACO approachest™], These advancements underscore the potential of ACO-based strategies to
enhance convergence efficiency and solution quality, making them increasingly suitable for multi-
objective and large-scale USV path planning.

2.2.3. Particle Swarm Optimization (PSO)

The Particle Swarm Optimization (PSO) algorithm, developed by Eberhart and Kennedy, is a
bio-inspired method valued for its simplicity and few parameters. Its major limitation lies in
premature convergence, reducing applicability in complex marine environments. Recent
advancements have sought to overcome these drawbacks. Zhao et al. proposed an adaptive particle
swarm optimization (APSO) algorithm for unmanned vehicle path planning that integrates a map
simplification strategy to reduce search space, three adaptive factors with Lévy flight for global-
local balance, and a safety checking mechanism with dynamic obstacle avoidance. This approach
achieved higher-quality global paths and stronger real-time obstacle avoidance than conventional
PSOM?, Wang et al. designed a bi-level hybrid framework for USV navigation in complex offshore
areas, where an improved PSO with opposition-based learning, adaptive inertia weight, and variable
step size was used for global optimization, while an enhanced APF handled local obstacle
avoidance to overcome the local minimum problem. Simulations demonstrated more stable
convergence and reliable collision avoidance than conventional PSO or APF alone, though the
framework has yet to be validated in large-scale real maritime operations*3l,

3. Local Path Planning
Local path planning enables USVs to adjust their trajectories in real time, ensuring collision
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avoidance and adaptability in dynamic maritime environments. Unlike global planning, it
emphasizes rapid response, maneuverability, and compliance with navigation rules under local
disturbances. In this paper, local path planning mainly focuses on representative methods such as
the Dynamic Window Approach (DWA), Artificial Potential Field (APF), and Rapidly-exploring
Random Tree (RRT), emphasizing their advantages, limitations, and recent improvements. A
comparative summary of these representative local path planning algorithms is provided in Table 3.

Table 3 Comparison of representative local path planning algorithms.

Algorithm Advantages Disadvantages Improvements in literature
Dynamic Window | Efficient in real time; | Local minima; | Non-uniform Theta* + DWA
Approach (DWA) considers dynamic detours in dense hybrid; bidirectional A* +

constraints environments DWA with COLREGs
Artificial Potential Simple modeling; Local minima; | Nonlinear potential functions;
Field (APF) efficient and adaptive oscillations predictive APF; APF + deep
RL; APF + A*
Rapidly-exploring Efficient in high- Non-smooth Dual-domain RRT*; RRT* +
Random Tree dimensional spaces; paths; slow DWA; improved RRT for sea
(RRT) simple convergence conditions; constrained
implementation sampling

3.1. Dynamic Window Approach (DWA)

The Dynamic Window Approach (DWA), first proposed by Fox et al. in the 1990s for mobile
robots, has been widely adopted for USVs due to its ability to generate collision-free velocity
commands under dynamic constraints. While efficient in real-time applications, it often suffers from
local minima and detours in cluttered environments.

In early work, Lin and Fu applied DWA for real-time obstacle avoidance of USVs,
demonstrating feasibility in cluttered environments but with limited robustness against dynamic
obstacles™. To address this limitation, Han et al.proposed a dynamically hybrid framework
combining non-uniform Theta* with improved DWA, enhancing global-local consistency and
reducing the risk of local trapping!*®l. Most recently, Xu et al. integrated bidirectional A* with
DWA while explicitly considering maneuverability and COLREGS, achieving safer and regulation-
compliant navigation, though its reliance on accurate maneuverability modeling may restrict
generalizability™®], These advancements show a chronological trajectory from feasibility
demonstrations toward hybrid and regulation-aware frameworks, progressively improving
robustness and practical applicability of DWA-based local planning in maritime environments.

3.2. Artificial Potential Field (APF)

The Atrtificial Potential Field (APF) method, proposed by Khatib, constructs a virtual force field
through attractive and repulsive forces to generate feasible paths. It offers simple modeling, high
efficiency, and adaptability but suffers from local minima, non-reachability, and oscillations.
Recent advances have sought to overcome these drawbacks.

Xiao et al. introduced nonlinear modifications to APF attraction—repulsion functions, alleviating
local minima and oscillations in USV navigation[!’l, while Song et al. extended APF with temporal
prediction to achieve smoother trajectories and proactive avoidance of dynamic obstacles8l.
Building on this, Li et al. integrated APF with COLREGs compliance via deep reinforcement
learning, enhancing navigational safety and rule adherencel*®, and Yang et al. combined APF with
A* under current-affected environments to improve robustness?l . Recent improvements in APF
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mainly address: (1) optimization of attractive—repulsive force models, (2) predictive and temporal
extensions, (3) integration with rule-based or learning frameworks, and (4) hybridization with
global search algorithms.

3.3. Rapidly-exploring Random Tree (RRT)

The Rapidly-exploring Random Tree (RRT) algorithm, first introduced by Steven M. LaValle in
1998, is a sampling-based method that enables efficient path planning by incrementally building a
tree through random sampling. It is widely recognized for its simplicity and effectiveness in high-
dimensional spaces. Nevertheless, issues such as path smoothness, convergence speed, and
sensitivity to sampling distribution remain. Current advancements in RRT-based methods are
mainly oriented toward: (1) adaptive sampling strategies; (2) hybrid integration with other planners;
(3) efficiency improvements through constrained sampling; and (4) enhanced robustness in dynamic
and uncertain maritime environments.

Wen et al. proposed a dual sampling domain reduction RRT* that constrains tree expansion
within feasible regions, thereby improving online safety and efficiency for USVs operating in
dynamic maritime environments 2!, Building on hybridization, Zhang and Chen coupled RRT*
with the dynamic window approach (DWA) to integrate global exploration with local trajectory
feasibility[??l, while Mao et al. refined RRT growth rules to enhance adaptability under complex sea
states?®l. Complementarily, Yu et al. introduced cylindrical sampling constraints to reduce
redundant exploration, significantly boosting computational efficiency?4,

4. Future Prospects
4.1. Integration of Global and Local Path Planning

To overcome the limitations of individual strategies, hybrid path planning that integrates global
and local methods is essential. Global planning ensures long-distance optimality but lacks real-time
adaptability, whereas local planning responds quickly to dynamic obstacles but suffers from local
minima and path smoothness issues. Their seamless integration can improve the efficiency and
robustness of USVs in complex maritime environments.

4.2. Al-Driven Autonomous Learning and Generalization

Future path planning for USVs is expected to rely increasingly on deep learning and
reinforcement learning. These approaches can enhance adaptability in complex and dynamic
environments. However, challenges remain in improving model generalization and interpretability
to ensure reliability in unknown maritime scenarios.

4.3. Multimodal Perception and Intelligent Decision-Making Integration

The integration of path planning with multi-source perception data (e.g., vision, radar, AlIS) is a
key direction for future research. By fusing unstructured information through artificial intelligence,
USVs can achieve perception—decision integration, thereby improving navigation safety and
environmental adaptability.

4.4. Distributed Cooperation and Large-Scale Swarm Control

The development of multi-USV cooperation will increasingly shift toward decentralized and
distributed intelligence. Future studies should focus on improving task allocation efficiency while
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enhancing robustness and self-organization in large-scale swarms, especially under communication
constraints or uncertain environments. To better illustrate this concept, Figure 3 presents a
schematic diagram of distributed cooperation and multi-task assignment within a USV swarm.

4.5. Cross-Platform Collaboration and Heterogeneous System Integration

Joint mission planning among heterogeneous unmanned systems, such as USVs and UAVSs, will
become an emerging trend. Research should explore cross-domain information fusion, real-time
trajectory coordination, and cooperative task allocation to improve mission execution capabilities in
complex maritime operations.

4.6. Deep Integration of Path Planning and Control

A future research priority is the development of unified frameworks that tightly couple path
planning with motion control, considering vessel dynamics, environmental disturbances, and
regulatory constraints. Efforts should emphasize reducing algorithmic complexity while ensuring
real-time performance and robustness for practical applications.

4.7. Integration of Simulation and Real-World Trials

Current studies are largely confined to simulation validation. Future work should strengthen field
trials and experiments under realistic sea conditions to facilitate the transition from theory to
engineering practice. Establishing standardized testing platforms and evaluation systems will be
crucial for practical deployment.

Figure 3 Distributed cooperation and large-scale swarm control of USV clusters.
5. Conclusion

The field of path planning for USVs still holds significant research potential and opportunities
for innovation. Table 4 provides a detailed comparison of the two methods, global and local path
planning, summarizing their main characteristics and potential improvements. In summary,
subsequent research should rely on the complementary advantages of global and local planning, and
through the deep integration of core technical directions such as artificial intelligence learning,
multimodal perception, collaborative control strategies, cross-platform collaboration, and planning-
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control integration, build a path planning system that can achieve seamless connection between
simulation research and actual sea trials, thereby accelerating the transformation of technologies in
this field from the theoretical level to engineering practice.

Table 4 Comparison between global and local path planning approaches.

Dimension Global planning Local planning
Objective Generate globally optimal or near- Real-time obstacle avoidance and
optimal path trajectory adjustment
Advantages Strong global optimality; suitable for High real-time performance; strong
complex tasks adaptability in dynamic
environments
Disadvantages High computational cost; weak Risk of local minima; limited
adaptability in dynamic environments global awareness
Improvement | Integration with intelligent optimization Fusion with global search;
trends and learning; multi-objective and energy | incorporation of learning and rule-
constraints based mechanisms
Application Long-distance navigation; mission Short-term avoidance; dense or
scenarios allocation cluttered environments
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