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Abstract: Unmanned Surface Vehicles (USVs), as essential platforms for intelligent 

maritime operations, rely heavily on efficient and reliable path planning to achieve 

autonomous navigation. This paper systematically reviews major path planning methods for 

USVs, including global planning approaches based on graph search and intelligent 

optimization, as well as local planning techniques such as the Dynamic Window Approach, 

Artificial Potential Field, and Rapidly-Exploring Random Tree. A comparative analysis of 

these algorithms highlights their respective strengths and limitations, while summarizing 

key directions of academic improvements. By integrating existing findings, this review 

provides a structured perspective on the evolution of USV path planning methodologies and 

their practical implications. Finally, future perspectives are summarized, including AI-

driven autonomous learning and generalization, multimodal perception and intelligent 

decision-making integration, distributed cooperation and large-scale swarm control, etc.

1. Introduction  

USVs have emerged as critical enablers of intelligent maritime operations, offering advantages 

in persistence, safety, and cost-effectiveness over traditional manned vessels. Their successful 

deployment in tasks such as long-term ocean observation, search and rescue, and cooperative patrol 

relies heavily on robust autonomous navigation capabilities. Among the enabling technologies, path 

planning plays a central role, as it determines how USVs generate feasible and safe trajectories 

while addressing uncertain ocean environments, dynamic obstacles, and regulatory constraints. 

In this context, path planning can be defined as the process of calculating an optimal path from a 

starting point to a destination under environmental constraints, typically requiring obstacle 

avoidance and the satisfaction of motion-related conditions such as kinematic feasibility and time 

efficiency. This process is often supported by a multi-dimensional evaluation framework that 

integrates geometric cost, motion compatibility, and safety redundancy, with coordinated analysis 
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achieved through quantitative metrics and weight assignment. To this end, a wide range of 

algorithmic approaches, such as graph search, sampling-based, and optimization methods,have been 

developed. 

To illustrate the fundamental concepts of path planning, Figure 1 provides a schematic diagram 

of global and local paths for an USV. Building on this, the overall framework of USV path planning 

methods is summarized in Figure 2, which highlights the classification into global and local 

planning approaches, along with representative algorithms in each category. 

 

Figure 1 Illustration of global and local path planning for an USV. 

 

Figure 2 Framework of USV Path Planning Methods. 

2. Global Path Planning 

Global path planning provides unmanned USVs with globally optimal or near-optimal routes. It 

focuses on balancing computational efficiency with adaptability, while addressing constraints such 

as dynamic obstacles, energy consumption, and regulatory requirements. In this paper, global path 
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planning is systematically discussed from the perspectives of graph search algorithms, intelligent 

optimization algorithms, and sampling-based methods, highlighting their advantages, limitations, 

and improvement trends. 

2.1. Path Planning Based on Graph Search 

Graph search algorithms are path planning methods based on graph theory, using node traversal 

and edge cost evaluation to explore the search space. Within a known topological map, they can 

generate collision-free paths from the start to the goal. Among them, heuristic methods (e.g., A*) 

and minimum-cost methods (e.g., Dijkstra) are effective in computing globally optimal solutions. A 

comparative analysis of Dijkstra and A* algorithms in terms of advantages, disadvantages, and 

recent improvements is provided in Table 1. 

Table 1 Comparison of Dijkstra Algorithm and A* Algorithm in path planning. 

Algorithm Advantages Disadvantages Improvements in literature 

Dijkstra Strong global 

optimality; broad 

applicability 

High computational 

complexity; low 

efficiency in large-

scale environments 

Energy-efficient optimization; 

environmental constraints 

integration; dynamic obstacle 

adaptation; multi-objective 

optimization 

A* Combines heuristic 

guidance with 

efficiency; 

guarantees 

optimality 

Strongly depends on 

heuristic function; 

insufficient real-time 

capability in large-

scale environments 

Path smoothing; binary tree 

recursive search; hybrid A*–

APF method; enhanced heuristic 

function; multi-vehicle 

cooperation 

2.1.1. Dijkstra Algorithm 

The Dijkstra algorithm, proposed by Dijkstra in 1959, is a classical shortest path search method 

characterized by strong determinism and broad applicability. However, when applied to large-scale 

graph searches, it suffers from limitations such as high computational complexity and insufficient 

efficiency. In recent years, improvements of the Dijkstra algorithm in the field of unmanned surface 

vehicles have primarily focused on: (1) energy-constrained optimization, (2) integration with 

environmental models, (3) adaptation to dynamic obstacles, and (4) multi-objective optimization. 

Singh et al. developed a constrained Dijkstra algorithm for USV path planning that integrates 

static and moving obstacles as well as sea surface currents into the cost function, improving path 

feasibility in dynamic maritime environments. While effective in simulations, its scalability and 

real-time applicability to large-scale sea conditions remain unverified[1]. In another study, Niu et al.  

proposed an energy-efficient path planning algorithm for USVs that integrates Dijkstra search with 

Voronoi and visibility-based methods while explicitly modeling sea current effects and safety 

distances from coastlines. Simulations on ten mission scenarios demonstrated improved endurance 

and reduced energy consumption, although the method depends heavily on accurate prior 

environmental data and may face challenges in real-time dynamic conditions[2]. Xing and Wu et al. 

highlighted from a comprehensive perspective that the improvements of Dijkstra mainly focus on 

multi-objective optimization and adaptability to dynamic environments, while emphasizing its trend 

of integration with heuristic search methods[3-4].  

2.1.2. A* algorithm 

The A* algorithm, proposed by Hart et al., is a bounded-cost search method based on heuristic 
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functions, which guarantees an optimal path under the condition of consistency. Compared with 

traditional search algorithms, A* exhibits advantages in terms of optimality and computational 

efficiency. However, its performance is highly dependent on the design of the heuristic function, 

and it often suffers from high search overhead and insufficient real-time capability in large-scale 

and complex environments.  

Song et al. introduced a smoothed A* algorithm that incorporates curvature and continuity 

constraints to generate feasible USV trajectories with reduced backtracking and sharp turns, but its 

reliance on static grid resolution limits adaptability in dynamic environments[5]. To address this, 

Chen et al. proposed a cooperative hunting method for multi-USVs based on an improved A 

algorithm, introducing a path smoothing strategy considering the minimum turning radius and a 

binary tree recursive search to enhance efficiency, while also applying a biomimetic formation 

strategy to improve collaborative target capture in obstacle-rich environments[6].Sang et al.  

embedded artificial potential field (APF) constraints into the A* heuristic for formation navigation, 

balancing trajectory safety and efficiency, yet further validation under real-time multi-vehicle 

coordination remains needed[7].In summary, to meet the navigation requirements of USVs, 

researchers have proposed various improvements to the A* algorithm, mainly focusing on: (1) path 

smoothing, (2) intelligent integration, (3) cooperative extension, and (4) adaptation to dynamic 

environments. 

2.2. Intelligent Optimization Algorithms 

Intelligent optimization algorithms have become one of the most widely applied approaches for 

USV path planning in recent years, demonstrating strong global search capability and adaptability 

in complex and dynamic environments. Compared with traditional graph search methods, they 

perform more effectively in multi-objective, nonlinear, and uncertain scenarios. Representative 

algorithms include genetic algorithms, ant colony optimization, and particle swarm optimization, 

with research efforts primarily focusing on search strategy refinement, adaptive parameter 

adjustment, and hybrid integration with other methods. To highlight their respective strengths, 

weaknesses, and ongoing research directions, a comparative summary of GA, ACO, and PSO is 

provided in Table 2. 

Table 2 Comparison of three intelligent optimization algorithms for USV path planning. 

Algorithm Advantages Disadvantages Improvements in literature 

Genetic 

Algorithm 

(GA) 

Strong global search 

capability; suitable 

for complex 

environments 

Slow convergence; 

reduced accuracy 

Improved convergence and 

smoothness; feedback 

mechanism for collision 

avoidance 

Ant Colony 

Optimization 

(ACO) 

High robustness; 

supports parallelism 

Slow convergence; 

premature stagnation 

Quantum ACO for faster 

convergence; optimized 

ACO for efficiency 

Particle Swarm 

Optimization 

(PSO) 

Simple design; few 

parameters 

Premature 

convergence; weak 

adaptability in 

dynamic environments 

Adaptive PSO for reliability; 

hybrid PSO for offshore 

areas 

2.2.1. Genetic Algorithm (GA) 

The Genetic Algorithm (GA), first proposed by Holland, is an evolutionary optimization method 

with strong global search ability, making it suitable for complex USV path planning. However, 
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classical GA is often limited by slow convergence and reduced solution accuracy. Recent studies 

have sought to address these limitations. Xin et al. proposed an improved genetic algorithm (GA) 

for USV path planning that incorporates multi-domain inversion to increase offspring diversity and 

a secondary fitness evaluation to eliminate suboptimal individuals. This strategy enhanced 

convergence speed, robustness, and trajectory quality compared with conventional GA, but the 

method remains computationally expensive and has yet to be validated in real-world dynamic 

maritime environments [8]. More recently, Gao et al.  incorporated a feedback mechanism into a GA 

framework to dynamically adjust crossover and mutation probabilities, thereby improving collision-

avoidance efficiency and path stability under hybrid map constraints. Nevertheless, the algorithm’s 

performance remains sensitive to parameter tuning, and its scalability in highly dynamic maritime 

conditions has not yet been systematically verified[9]. 

2.2.2. Ant Colony Optimization (ACO) 

Ant Colony Optimization (ACO), introduced by Dorigo in the 1990s, is a swarm intelligence 

algorithm based on pheromone-guided search, widely applied in path planning. Although ACO 

provides strong robustness and parallelism, it often converges slowly and risks premature stagnation. 

Recent research has focused on improving its efficiency and adaptability for USV applications. Xia 

et al. proposed an improved quantum ant colony algorithm (IQACA) for USV path planning that 

jointly optimizes path length, energy consumption, smoothness, and safety. The method achieved 

lower path costs and faster convergence than conventional ACO variants, though its effectiveness 

under real-time dynamic sea conditions remains unverified [10]. More recently, Cui et al. developed 

an optimized ant colony algorithm (OACA) for USV path planning that integrates energy 

consumption and turning costs. By adopting non-uniform pheromone initialization, weighted 

pheromone updating, and a penalty mechanism, the method accelerates convergence and avoids 

premature stagnation, achieving more reliable and energy-efficient global paths than conventional 

ACO approaches[11]. These advancements underscore the potential of ACO-based strategies to 

enhance convergence efficiency and solution quality, making them increasingly suitable for multi-

objective and large-scale USV path planning. 

2.2.3. Particle Swarm Optimization (PSO) 

The Particle Swarm Optimization (PSO) algorithm, developed by Eberhart and Kennedy, is a 

bio-inspired method valued for its simplicity and few parameters. Its major limitation lies in 

premature convergence, reducing applicability in complex marine environments. Recent 

advancements have sought to overcome these drawbacks. Zhao et al. proposed an adaptive particle 

swarm optimization (APSO) algorithm for unmanned vehicle path planning that integrates a map 

simplification strategy to reduce search space, three adaptive factors with Lévy flight for global–

local balance, and a safety checking mechanism with dynamic obstacle avoidance. This approach 

achieved higher-quality global paths and stronger real-time obstacle avoidance than conventional 

PSO[12]. Wang et al. designed a bi-level hybrid framework for USV navigation in complex offshore 

areas, where an improved PSO with opposition-based learning, adaptive inertia weight, and variable 

step size was used for global optimization, while an enhanced APF handled local obstacle 

avoidance to overcome the local minimum problem. Simulations demonstrated more stable 

convergence and reliable collision avoidance than conventional PSO or APF alone, though the 

framework has yet to be validated in large-scale real maritime operations[13]. 

3. Local Path Planning 

Local path planning enables USVs to adjust their trajectories in real time, ensuring collision 
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avoidance and adaptability in dynamic maritime environments. Unlike global planning, it 

emphasizes rapid response, maneuverability, and compliance with navigation rules under local 

disturbances. In this paper, local path planning mainly focuses on representative methods such as 

the Dynamic Window Approach (DWA), Artificial Potential Field (APF), and Rapidly-exploring 

Random Tree (RRT), emphasizing their advantages, limitations, and recent improvements. A 

comparative summary of these representative local path planning algorithms is provided in Table 3. 

Table 3 Comparison of representative local path planning algorithms. 

Algorithm Advantages Disadvantages Improvements in literature 

Dynamic Window 

Approach (DWA) 

Efficient in real time; 

considers dynamic 

constraints 

Local minima; 

detours in dense 

environments 

Non-uniform Theta* + DWA 

hybrid; bidirectional A* + 

DWA with COLREGs 

Artificial Potential 

Field (APF) 

Simple modeling; 

efficient and adaptive 

Local minima; 

oscillations 

Nonlinear potential functions; 

predictive APF; APF + deep 

RL; APF + A* 

Rapidly-exploring 

Random Tree 

(RRT) 

Efficient in high-

dimensional spaces; 

simple 

implementation 

Non-smooth 

paths; slow 

convergence 

Dual-domain RRT*; RRT* + 

DWA; improved RRT for sea 

conditions; constrained 

sampling 

3.1. Dynamic Window Approach (DWA) 

The Dynamic Window Approach (DWA), first proposed by Fox et al. in the 1990s for mobile 

robots, has been widely adopted for USVs due to its ability to generate collision-free velocity 

commands under dynamic constraints. While efficient in real-time applications, it often suffers from 

local minima and detours in cluttered environments. 

In early work, Lin and Fu applied DWA for real-time obstacle avoidance of USVs, 

demonstrating feasibility in cluttered environments but with limited robustness against dynamic 

obstacles[14]. To address this limitation, Han et al.proposed a dynamically hybrid framework 

combining non-uniform Theta* with improved DWA, enhancing global-local consistency and 

reducing the risk of local trapping[15]. Most recently, Xu et al. integrated bidirectional A* with 

DWA while explicitly considering maneuverability and COLREGs, achieving safer and regulation-

compliant navigation, though its reliance on accurate maneuverability modeling may restrict 

generalizability[16]. These advancements show a chronological trajectory from feasibility 

demonstrations toward hybrid and regulation-aware frameworks, progressively improving 

robustness and practical applicability of DWA-based local planning in maritime environments. 

3.2. Artificial Potential Field (APF) 

The Artificial Potential Field (APF) method, proposed by Khatib, constructs a virtual force field 

through attractive and repulsive forces to generate feasible paths. It offers simple modeling, high 

efficiency, and adaptability but suffers from local minima, non-reachability, and oscillations. 

Recent advances have sought to overcome these drawbacks. 

Xiao et al. introduced nonlinear modifications to APF attraction–repulsion functions, alleviating 

local minima and oscillations in USV navigation[17], while Song et al.  extended APF with temporal 

prediction to achieve smoother trajectories and proactive avoidance of dynamic obstacles[18]. 

Building on this, Li et al. integrated APF with COLREGs compliance via deep reinforcement 

learning, enhancing navigational safety and rule adherence[19], and Yang et al. combined APF with 

A* under current-affected environments to improve robustness[20] . Recent improvements in APF 
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mainly address: (1) optimization of attractive–repulsive force models, (2) predictive and temporal 

extensions, (3) integration with rule-based or learning frameworks, and (4) hybridization with 

global search algorithms. 

3.3. Rapidly-exploring Random Tree (RRT) 

The Rapidly-exploring Random Tree (RRT) algorithm, first introduced by Steven M. LaValle in 

1998, is a sampling-based method that enables efficient path planning by incrementally building a 

tree through random sampling. It is widely recognized for its simplicity and effectiveness in high-

dimensional spaces. Nevertheless, issues such as path smoothness, convergence speed, and 

sensitivity to sampling distribution remain. Current advancements in RRT-based methods are 

mainly oriented toward: (1) adaptive sampling strategies; (2) hybrid integration with other planners; 

(3) efficiency improvements through constrained sampling; and (4) enhanced robustness in dynamic 

and uncertain maritime environments. 

Wen et al. proposed a dual sampling domain reduction RRT* that constrains tree expansion 

within feasible regions, thereby improving online safety and efficiency for USVs operating in 

dynamic maritime environments [21]. Building on hybridization, Zhang and Chen coupled RRT* 

with the dynamic window approach (DWA) to integrate global exploration with local trajectory 

feasibility[22], while Mao et al. refined RRT growth rules to enhance adaptability under complex sea 

states[23]. Complementarily, Yu et al. introduced cylindrical sampling constraints to reduce 

redundant exploration, significantly boosting computational efficiency[24]. 

4. Future Prospects 

4.1. Integration of Global and Local Path Planning 

To overcome the limitations of individual strategies, hybrid path planning that integrates global 

and local methods is essential. Global planning ensures long-distance optimality but lacks real-time 

adaptability, whereas local planning responds quickly to dynamic obstacles but suffers from local 

minima and path smoothness issues. Their seamless integration can improve the efficiency and 

robustness of USVs in complex maritime environments.  

4.2. AI-Driven Autonomous Learning and Generalization 

Future path planning for USVs is expected to rely increasingly on deep learning and 

reinforcement learning. These approaches can enhance adaptability in complex and dynamic 

environments. However, challenges remain in improving model generalization and interpretability 

to ensure reliability in unknown maritime scenarios. 

4.3. Multimodal Perception and Intelligent Decision-Making Integration 

The integration of path planning with multi-source perception data (e.g., vision, radar, AIS) is a 

key direction for future research. By fusing unstructured information through artificial intelligence, 

USVs can achieve perception–decision integration, thereby improving navigation safety and 

environmental adaptability. 

4.4. Distributed Cooperation and Large-Scale Swarm Control 

The development of multi-USV cooperation will increasingly shift toward decentralized and 

distributed intelligence. Future studies should focus on improving task allocation efficiency while 
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enhancing robustness and self-organization in large-scale swarms, especially under communication 

constraints or uncertain environments. To better illustrate this concept, Figure 3 presents a 

schematic diagram of distributed cooperation and multi-task assignment within a USV swarm. 

4.5. Cross-Platform Collaboration and Heterogeneous System Integration 

Joint mission planning among heterogeneous unmanned systems, such as USVs and UAVs, will 

become an emerging trend. Research should explore cross-domain information fusion, real-time 

trajectory coordination, and cooperative task allocation to improve mission execution capabilities in 

complex maritime operations. 

4.6. Deep Integration of Path Planning and Control 

A future research priority is the development of unified frameworks that tightly couple path 

planning with motion control, considering vessel dynamics, environmental disturbances, and 

regulatory constraints. Efforts should emphasize reducing algorithmic complexity while ensuring 

real-time performance and robustness for practical applications. 

4.7. Integration of Simulation and Real-World Trials 

Current studies are largely confined to simulation validation. Future work should strengthen field 

trials and experiments under realistic sea conditions to facilitate the transition from theory to 

engineering practice. Establishing standardized testing platforms and evaluation systems will be 

crucial for practical deployment. 

 

Figure 3 Distributed cooperation and large-scale swarm control of USV clusters. 

5. Conclusion 

The field of path planning for USVs still holds significant research potential and opportunities 

for innovation. Table 4 provides a detailed comparison of the two methods, global and local path 

planning, summarizing their main characteristics and potential improvements. In summary, 

subsequent research should rely on the complementary advantages of global and local planning, and 

through the deep integration of core technical directions such as artificial intelligence learning, 

multimodal perception, collaborative control strategies, cross-platform collaboration, and planning-
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control integration, build a path planning system that can achieve seamless connection between 

simulation research and actual sea trials, thereby accelerating the transformation of technologies in 

this field from the theoretical level to engineering practice. 

Table 4 Comparison between global and local path planning approaches. 

Dimension Global planning Local planning 

Objective Generate globally optimal or near-

optimal path 

Real-time obstacle avoidance and 

trajectory adjustment 

Advantages Strong global optimality; suitable for 

complex tasks 

High real-time performance; strong 

adaptability in dynamic 

environments 

Disadvantages High computational cost; weak 

adaptability in dynamic environments 

Risk of local minima; limited 

global awareness 

Improvement 

trends 

Integration with intelligent optimization 

and learning; multi-objective and energy 

constraints 

Fusion with global search; 

incorporation of learning and rule-

based mechanisms 

Application 

scenarios 

Long-distance navigation; mission 

allocation 

Short-term avoidance; dense or 

cluttered environments 
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