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Abstract: When addressing rapidly changing indoor PM2.5 and particulate concentrations, 

real-time monitoring accuracy is insufficient and purification response lags. This paper 

develops a real-time monitoring and coordinated purification model based on 

high-precision laser particle sensors and an Internet of Things (IoT) platform to achieve 

intelligent response and control to excessive PM2.5 concentrations. 1) Laser particle 

sensors are strategically placed in the cleanroom to collect real-time data at one-minute 

intervals; 2) Kalman filtering is used to fuse multi-point data, eliminating outliers and 

improving monitoring reliability; 3) Based on a cloud-based data analysis module, 

dynamic thresholds are set to trigger a coordinated purification strategy, automatically 

adjusting air volume and purification unit operating status; 4) Device coordinated 

responses are achieved through a wireless control system. Experimental results show that 

the system can reduce the response time to PM2.5 peaks to within 3 minutes, with a 

monitoring error of ±2 μg/m³. The conclusion shows that the clean air-conditioning system 

based on real-time monitoring and intelligent linkage significantly improves the indoor 

particle control capability and provides effective protection for a high-cleanliness 

environment. 

1. Introduction 

PM2.5 and particulate pollution in indoor air are of great concern in high-purity environments 

such as microelectronics manufacturing, biomedicine, and precision assembly. Cleanrooms require 

extremely stringent control of suspended particulate matter in the air; even slight fluctuations in 

particulate concentration can impact process stability and product quality. Traditional air 

conditioning purification systems often rely on manual timing or single-point sensor feedback for 

adjustment, making them difficult to adapt to the dynamic changes in particle loads during actual 

production. This often leads to monitoring lags, slow responses, and low purification efficiency, 

posing a threat to the high-standard operation of cleanroom environments. Real-time sensing and 

intelligent response to particulate matter pollution have become key technical challenges in 
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upgrading cleanroom air conditioning systems. 

To this end, an integrated model for real-time monitoring and coordinated purification, based on 

high-precision laser particle sensors and an Internet of Things platform, has been developed, which 

holds significant application value. Multi-point distributed sensing and data fusion processing not 

only improve monitoring reliability but also provide a solid data foundation for dynamic control. 

Leveraging cloud-based data analysis and intelligent decision-making, on-demand linkage and 

refined management of purification equipment are achieved, effectively improving cleanroom 

control capabilities for PM2.5 and particulate matter concentrations. This approach is expected to 

address the shortcomings of traditional systems in response speed, energy efficiency management, 

and equipment coordination, providing new ideas and paths for intelligent operation and 

maintenance of high-purity environments. 

This paper is organized as follows: Part 2 reviews research progress in cleanroom air particulate 

monitoring and control. Part 3 details the design approach for a real-time monitoring and linkage 

purification system based on an IoT platform. Part 4 demonstrates the experimental verification and 

performance evaluation of the system in an actual cleanroom environment. The final part 

summarizes the research findings and provides an outlook on future technological iterations. 

2. Related work 

The monitoring and assessment of particulate matter concentration has always been an important 

research topic in the field of environmental science. Scholars have conducted a large number of 

field observations and model analyses based on different scenarios and needs, and have achieved 

rich research results. Xu and Wang took October, December 2023 and February 2024 as three 

typical seasonal months and conducted particulate matter concentration monitoring in the morning 

(7:30-9:30) and evening (17:30-19:30) at the south gate of Jiyang College of Zhejiang Agricultural 

and Forestry University, and calculated the concentrations of TSP, PM10 and PM2.5 [1]. Wei et al. 

set up sampling points in areas far away from pollution sources, with flat terrain and good 

vegetation coverage, in areas near plain traffic arteries, on mountain tops, on mountain sides and at 

the foot of mountains [2]. They used a medium-flow impact graded sampler for continuous 

sampling and a laser particle counter to monitor concentration changes every hour. The monitoring 

period was all day. In order to monitor various environmental indicators and create a healthier 

indoor environment, Zheng and Yan designed a multifunctional environmental indicator monitoring 

system, which enables people to respond to environmental changes in a timely manner and take 

corresponding measures [3]. Zhang et al. established a prediction model based on nonlinear 

self-regression neural network based on the monitoring data of pollutants (PM2.5, PM10, NO2, NO, 

NOx, CO) and related meteorological parameters at the Liangsidu monitoring station in Xianyang 

City, Shaanxi Province, and determined the optimal network structure for different prediction time 

periods, thereby achieving effective prediction of PM2.5/10 concentrations in the next 6 hours, 12 

hours and 24 hours [4]. Zhang et al. sampled PM2.5 and individual exposure concentrations in 

typical indoor places on the campus of Beijing Normal University, recorded the atmospheric PM2.5 

concentrations at the three nearest outdoor monitoring stations, and conducted a questionnaire 

survey on the daily behavior patterns of students on campus to evaluate the PM2.5 exposure 

concentrations of college students in the heating season and the non-heating season [5]. Zhu et al. 

reviewed the PM2.5 estimation process based on satellite AOD data from the aspects of data source, 

estimation model and model verification [6]. Liu et al. combined the Weather Research and 

Forecasting-Community Multiscale Air Quality Modeling System, ground observation data, 

machine learning algorithms, and multi-source fusion PM2.5 data to construct a full-coverage 

near-real-time PM2.5 chemical composition dataset with a spatial resolution of 10 km since 2000 
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[7]. Jayaratne et al. evaluated six low-cost PM2.5 sensors using two combustion aerosols, concrete 

dust, and ambient particulate matter under laboratory and field conditions [8]. Park et al. provided a 

possible method for assessing PM2.5 exposure in a specific community population [9]. Magi et al. 

evaluated 16 months of PA-II PM2.5 data collected in a near-road urban environment in a humid 

climate in Charlotte, North Carolina [10]. The above studies systematically explored the dynamic 

changes and environmental impacts of particulate matter concentrations from multiple levels, 

including monitoring methods, data fusion, model prediction, and exposure assessment, providing 

important references for this study. 

3. Methods 

3.1 High-Precision Laser Particle Sensor Deployment Plan 

The deployment of high-precision laser particle sensors is based on the spatial layout and airflow 

organization of the cleanroom air conditioning system. Monitoring units are divided based on 

factors such as the cleanroom area, the distribution of supply and return air vents, and key process 

points or personnel activity areas. Computational Fluid Dynamics (CFD) simulations analyze the 

particle concentration distribution and determine representative monitoring points. One or two laser 

particle sensors are deployed in each unit. The sensors are mounted at a height within the breathing 

zone of 1.2-1.5 meters above the ground, accurately reflecting the air inhaled by personnel while 

avoiding the influence of surface turbulence. All sensors are connected to the local data acquisition 

module via wired or wireless means to ensure real-time and stable data transmission. To prevent 

single points of failure and monitoring blind spots, dual-redundancy is implemented at key 

locations, and sensor sensitivity is regularly calibrated to ensure long-term accuracy. The sensors 

collect PM2.5 and particle number concentrations in real time with a sampling interval of one 

minute. Raw data is uploaded to the central control system via the local area network for subsequent 

integration processing and dynamic analysis. A dense distribution scheme is adopted for air supply 

and return air outlets, as well as process areas prone to particle accumulation, to improve 

monitoring coverage. 

3.2 Data Acquisition and Fusion Algorithm 

During the data acquisition process, each laser particle sensor synchronously uploads raw PM2.5 

and particulate concentration data at one-minute intervals. The central control system receives the 

values from all monitoring points in real time and first performs a time series integrity check and 

data consistency check. To eliminate data deviations that may occur in some sensors due to 

short-term interference, equipment jitter, or local anomalies, the system automatically fuses the 

collected multi-point data using a Kalman filter algorithm. Kalman filtering dynamically optimizes 

the estimate of true particulate concentration by combining historical data with current 

measurements, effectively smoothing the time series data curves of each monitoring point and 

reducing the impact of occasional anomalies on overall judgment [11-12]. When the fluctuation 

amplitude of a sensor's data is significantly higher than the historical trend or significantly different 

from surrounding points, the system automatically identifies it as an outlier and removes it, 

retaining only the valid data after filtering and fusion for subsequent decision-making. The results 

of multi-point fusion not only improve the accuracy of spatial particulate concentration monitoring 

but also enhance the system's response sensitivity to sudden pollution events. 
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3.3 Design of the IoT Platform and Cloud Analysis Module 

The IoT platform adopts a distributed architecture, with edge gateways deployed at the 

cleanroom air conditioning system site. These gateways are responsible for the real-time collection, 

preliminary processing, and encrypted transmission of local laser particle sensor data. All edge 

gateways connect to the central server via a secure protocol and upload the integrated particle 

concentration data to the cloud database. The cloud analysis module, powered by high-performance 

computing resources, automatically creates data tags based on the characteristics of different 

cleanroom areas and intelligently archives and manages data by region, time period, and equipment 

type [13-14]. The system integrates a real-time data stream analysis engine to continuously monitor 

changes in PM2.5 and particle concentrations at each location. It compares historical data with 

similar scenarios to identify abnormal trends and pollution sources. The analysis module 

incorporates a built-in machine learning model that can adaptively adjust data anomaly criteria and 

threshold settings, dynamically optimizing purification response strategies for different seasons and 

operating conditions. All data analysis results and status information are pushed to the operation and 

maintenance management terminal in real time via a visual interface, supporting alarm push, remote 

parameter adjustment, and coordinated control of purification equipment. The platform supports 

multiple third-party interface protocols and can seamlessly connect to building automation systems, 

achieving unified linkage between cleanroom air conditioning, purification equipment, and 

environmental monitoring. All cloud data is periodically backed up and access rights are 

hierarchically managed to ensure data security and privacy compliance. Figure 1 shows the cloud 

analysis module in this paper: 

 

Figure 1: Cloud analysis module display 
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3.4 Dynamic Threshold and Linkage Strategy Setting and Wireless Control 

The dynamic threshold and linkage strategy setting is based on historical monitoring data and 

on-site environmental characteristics. The PM2.5 and particulate concentrations in different clean 

areas are set as graded thresholds. Combined with the machine learning model of the cloud analysis 

module, it automatically identifies the concentration change patterns between daytime and 

nighttime, working days and non-working hours, and realizes adaptive adjustment of the threshold. 

The system assigns different priorities and response levels to each monitoring area based on the use 

of space, the frequency of personnel activities and process sensitivity. The threshold setting for key 

areas is more stringent. Once the monitoring data approaches or exceeds the dynamic threshold, the 

cloud immediately issues linkage strategy instructions, including increasing the air supply volume, 

starting the high-efficiency HEPA purification unit, switching to the fresh air mode, etc. All linkage 

strategies are issued through the wireless control module, using an encrypted communication 

protocol to ensure that the instructions are transmitted to each air conditioning and purification 

equipment terminal in real time and reliably [15]. The wireless control system supports regional and 

full-area linkage, and can flexibly adjust the response range according to the pollution diffusion 

trend to improve energy utilization and purification effect. During the strategy execution process, 

the system collects the equipment operation status and the new round of concentration data in real 

time, and continuously optimizes the threshold setting and control parameters. Equipment 

anomalies or response timeouts automatically trigger alerts and are pushed to the operations and 

maintenance platform, enabling closed-loop management of the entire process. Table 1 shows the 

dynamic thresholds, response strategies, and control parameters for different cleanroom areas: 

Table 1: Dynamic thresholds, response strategies, and control parameters 

Area 
Dynamic PM2.5 

Threshold (μg/m³) 

Preferred Response 

Strategy 

HEPA Purification 

Intensity (%) 

Linkage Control 

Response Time (s) 

Clean Zone A 8 
Increase Air Volume 

+ HEPA Full Speed 
100 30 

Clean Zone B 12 
Activate Fresh Air + 

Enhanced HEPA 
80 45 

Semi-clean C 18 
Medium-speed HEPA 

+ Local Air Supply 
60 60 

General Zone D 25 
Fresh Air Mode + 

Low-speed HEPA 
40 90 

Equipment Room E 35 Fresh Air Mode Only 0 120 

Corridor F 20 
Local Air Supply + 

Enhanced HEPA 
70 75 

4. Results and Discussion 

4.1 Experimental Setup 

This experiment was conducted within a large pharmaceutical cleanroom. Six monitoring points 

were selected, encompassing typical clean, semi-clean, and general areas. High-precision laser 

particle sensors and edge gateways were deployed at each location, with a 10-second sampling 

interval. The edge gateways were responsible for on-site data preprocessing and real-time upload. 

All monitoring points were wirelessly linked to the air conditioning system and purification 

equipment. A machine learning analysis module was deployed on the cloud platform to dynamically 

set PM2.5 concentration thresholds for each area. The experiments were conducted under a variety 

of typical operating conditions, including normal operation, high-frequency personnel flow, 
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production process transitions, and sudden infiltration of external pollutants. These conditions were 

covered during daytime, nighttime, and varying weather conditions to ensure comprehensive 

experimental data. The system leveraged cloud-based data stream analysis and local edge 

collaboration to record key parameters such as PM2.5 concentration, response latency, and 

equipment operating status in real time. All data was archived in a cloud database. For comparative 

evaluation, a traditional manual control system was simultaneously established as a control group, 

utilizing the same monitoring equipment and layout. All experimental procedures were fully 

monitored by a third-party professional organization. Evaluation metrics include PM2.5 response 

delay, monitoring error, and purification efficiency. All test cycles lasted no less than 48 hours to 

ensure that data from each stage fully reflected system performance. Equipment functionality, 

sensor accuracy, and environmental sealing were rigorously tested and calibrated before and after 

the experiment to ensure experimental fairness and data accuracy. 

4.2 Real-time Monitoring Accuracy 

In the real-time monitoring accuracy analysis experiment, a national standard particulate matter 

generator was used as a PM2.5 reference source. Tests were conducted at different concentration 

levels (5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, and 60 μg/m³). After each concentration level was 

set, the monitoring systems in the experimental and control groups simultaneously collected data 

and compared it with the standard value to determine the error. The experimental group system 

utilized a multi-point fusion calibration algorithm and a dynamic drift correction mechanism to 

achieve real-time automatic error compensation. The control group system used traditional 

single-point calibration and regular manual calibration. The entire test lasted two hours. After the 

data at each level stabilized, the monitored values for the experimental and control groups were 

recorded, and the deviations from the reference values were calculated. All sensors and 

environmental conditions were maintained consistent to ensure objective and fair testing. The 

experimental data are detailed in Figure 2: 

 

Figure 2: Real-time monitoring accuracy 

As shown in Figure 2, the error at each level in the experimental group remained within ±2μg/m³, 

while the error in the control group increased significantly with increasing concentration, exceeding 

±3.5μg/m³ in some intervals. The experimental group demonstrated strong linearity, with monitored 

values nearly identical to the reference values, demonstrating the significant impact of dynamic 
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calibration and fusion compensation mechanisms on improving real-time accuracy. The control 

group, however, experienced significant fluctuations in error due to single-point calibration and 

environmental drift, particularly at low concentrations. Overall, the experimental group 

demonstrated superior accuracy at every level, particularly at high concentrations. The system 

exhibited superior stability and reliability, providing solid technical support for cleanroom air 

quality monitoring. 

4.3 Linked Purification Response Effect 

The purification response effect experiment utilized a confined space sudden particle injection 

method. The PM2.5 concentration in the clean area was artificially raised to above 60μg/m³, 

triggering the linkage of the purification systems in both the experimental and control groups. The 

experimental group's system integrated intelligent dynamic threshold detection and multi-level 

linkage control, automatically identifying peak values and accurately issuing purification 

commands. The control group used a traditional timed/manual activation mode. During the test, the 

system automatically recorded minute-by-minute changes in PM2.5 values from the time the PM2.5 

peak appeared until the concentration dropped below 10μg/m³, continuously monitoring the 

purification response curve. Each test was repeated three times, and the average was taken to ensure 

representative and consistent data. During the experiment, the ambient temperature, humidity, room 

volume, and initial concentration were strictly maintained, and all equipment statuses were reset to 

zero. Figure 3 illustrates the purification response effect: 

 

Figure 3: Purification response demonstration 

In terms of purification response, the experimental group had already reduced PM2.5 to 9.7 

μg/m³ by the third minute, achieving the purification target ahead of schedule. The concentration 

then quickly stabilized, demonstrating exceptionally high response speed and purification efficiency. 

The control group, on the other hand, had still not reached 10 μg/m³ after 11 minutes, significantly 

lagging behind in purification speed. The experimental group's response efficiency was like a sprint, 

going all out from the start, quickly "locking in" the pollution source and swiftly purifying it, 

leaving virtually no opportunity for particulate matter to disperse. The control group, on the other 

hand, was more like a jog, with a slow purification process and susceptible to external interference. 

The purification process was prolonged, failing to meet high cleanliness standards. This significant 

difference fully demonstrates the fundamental difference between intelligent linkage and traditional 
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models in the actual operation of cleanrooms. The intelligent system's overwhelming advantages in 

response speed, thoroughness of purification, and process control set a new benchmark for efficient 

cleanroom operations in the industry. 

4.4 Discussion on Energy Consumption and System Stability 

The experiment ran continuously in the clean area for 72 hours. During this time, the total energy 

consumption, purification equipment start-up and shutdown times, equipment abnormal alarms, and 

system online rate of the experimental group (intelligent linkage system) and the control group 

(traditional timing/manual control system) were monitored and recorded. The experimental group 

implemented dynamic thresholds and a graded response strategy to automatically adjust purification 

intensity and operating time based on demand, achieving both energy conservation and high 

efficiency. The control group operated at a fixed cycle and intensity, unable to dynamically adjust 

based on real-time air quality. Energy consumption was measured using multiple professional 

parallel meters. Abnormal alarms and online rates were collected through equipment self-tests and 

cloud-based logs. All data was averaged over three tests to ensure objectivity and 

comprehensiveness. Table 2 compares the energy consumption and stability test data for the two 

systems: 

Table 2: Discussion on energy consumption and stability 

Item 
Experimental Group 

(Intelligent Linkage) 

Control Group 

(Traditional Control) 
Advantage Comparison 

Total Energy 

Consumption (kWh/72h) 
88.7 112.6 About 21% energy saving 

Avg. Equipment 

Start/Stop (times/day) 
12 27 

Start/stop frequency 

reduced by ~56% 

Number of Alarms 

(times/72h) 
0 3 

Real-time self-check greatly 

reduces failures 

System Uptime Rate (%) 99.8 95.1 
Uptime rate increased by 

~5% points 

Avg. Purification Intensity 

(%) 
54 87 

Dynamic adjustment, lower 

load 

Maintenance Orders 

(times/72h) 
1 4 

Maintenance demand 

reduced by 75% 

Thanks to intelligent linkage and dynamic control strategies, the experimental group achieved 

significantly lower energy consumption than the traditional system, saving approximately 21% in 

total energy consumption over 72 hours, embodying the "on-demand purification, optimal energy 

efficiency" operation and maintenance philosophy. Equipment start-up and shutdown times were 

reduced by more than half, reducing mechanical wear and extending the life of the purification 

system. Abnormal alarms were almost zero, demonstrating that the intelligent system's fault 

self-diagnosis and predictive maintenance capabilities significantly outperform traditional solutions, 

significantly reducing unplanned downtime. The system's uptime consistently exceeded 99.8%, 

ensuring continuous monitoring and response, effectively supporting the high-standard operation of 

the cleanroom. Furthermore, the experimental group significantly reduced the equipment's 

high-load operating time by automatically adjusting the average purification intensity, achieving 

low-carbon operation. The number of maintenance work orders decreased significantly, alleviating 

the pressure on the operation and maintenance team. 
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5. Conclusions 

This study used high-precision laser particle sensors and an IoT platform in the cleanroom to 

construct a real-time monitoring and intelligent linkage purification model, achieving efficient 

response and automated control to PM2.5 concentration fluctuations. The system integrated 

multi-point data and utilized a Kalman filter to eliminate anomalies, significantly improving 

monitoring continuity and reliability. Leveraging cloud-based analysis and dynamic threshold 

strategies, purification equipment can automatically adjust air volume and operating status based on 

actual indoor particulate concentrations, avoiding the energy waste and response delays associated 

with traditional models. The introduction of wireless linkage control significantly enhances the 

interoperability of various devices, making the overall system more adaptable and robust. Practice 

has demonstrated that the system not only excels in particle monitoring accuracy and response 

speed, but also effectively balances energy efficiency and operational requirements such as 

equipment maintenance, providing an innovative solution for air quality management in 

high-standard cleanrooms. Furthermore, the system's modularity and intelligent features lay a solid 

foundation for future intelligent upgrades and large-scale deployment in cleanrooms. However, the 

system's long-term stability under extreme operating conditions, its ability to identify complex, 

multi-source pollution, and its compatibility with a wider range of heterogeneous equipment still 

require further improvement. Future work can continue to deepen algorithm adaptation, device 

interoperability, and data security, expanding the model's applicability to a wider range of 

cleanroom scenarios. 

References 

[1] Xu Sennan, Wang Lili. Monitoring and analysis of TSP, PM<sub>10</sub>, and PM<sub>2.5</sub> 

concentrations in campus atmosphere [J]. Environmental Protection Frontier, 2024, 14(3): 430-437. 

[2] Wei Liying, Xie Fei, Liang Jianping, Li Xiaobo, Li Yan. Research on the diffusion characteristics of air particulate 

pollutant concentration under continuous high temperature weather in summer [J]. Environmental Science and 

Management, 2025, 50(6): 55-59. 

[3] Zheng Yuhong, Yan Yanhong. Design of environmental temperature, humidity and PM2.5 concentration monitor 

based on single chip microcomputer [J]. Computer Knowledge and Technology, 2021, 17(32): 104-106. 

[4] Zhang Daning, Zhang Meng, Zhang Bo. PM2.5/10 concentration prediction model based on NARX neural network 

- a case study of Liangsidu monitoring station in Xianyang City [J]. Journal of Earth Environment, 2020, 11(2): 

161-168. 

[5] Zhang Yujie, Sun Danyi, Liu Jianwei, Chen Yanjiao, Cao Hongbin. PM2.5 exposure assessment of college students 

based on indoor environmental concentration monitoring [J]. Environmental Pollution and Control, 2020, 42(11): 

1405-1409. 

[6] Zhu S, Tang J, Zhou X, et al. Research progress, challenges, and prospects of PM2. 5 concentration estimation 

using satellite data [J]. Environmental Reviews, 2023, 31(4): 605-631. 

[7] Liu S, Geng G, Xiao Q, et al. Tracking daily concentrations of PM2. 5 chemical composition in China since 2000 

[J]. Environmental Science & Technology, 2022, 56(22): 16517-16527. 

[8] Jayaratne R, Liu X, Ahn K H, et al. Low-cost PM2. 5 sensors: An assessment of their suitability for various 

applications [J]. Aerosol and Air Quality Research, 2020, 20(3): 520-532. 

[9] Park J, Ryu H, Kim E, et al. Assessment of PM2. 5 population exposure of a community using sensor-based air 

monitoring instruments and similar time-activity groups [J]. Atmospheric Pollution Research, 2020, 11(11): 

1971-1981. 

[10] Magi B I, Cupini C, Francis J, et al. Evaluation of PM2. 5 measured in an urban setting using a low-cost optical 

particle counter and a Federal Equivalent Method Beta Attenuation Monitor [J]. Aerosol Science and Technology, 

2020, 54(2): 147-159. 

[11] Bi J, Knowland K E, Keller C A, et al. Combining machine learning and numerical simulation for high-resolution 

PM2. 5 concentration forecast [J]. Environmental science & technology, 2022, 56(3): 1544-1556. 

[12] Wang Y S, Chang L C, Chang F J. Explore regional PM2. 5 features and compositions causing health effects in 

Taiwan [J]. Environmental Management, 2021, 67(1): 176-191. 

[13] Desouza P, Kinney P L. On the distribution of low-cost PM2. 5 sensors in the US: demographic and air quality 

112



associations [J]. Journal of exposure science & environmental epidemiology, 2021, 31(3): 514-524. 

[14] Geng G, Xiao Q, Liu S, et al. Tracking air pollution in China: near real-time PM2. 5 retrievals from multisource 

data fusion [J]. Environmental Science & Technology, 2021, 55(17): 12106-12115. 

[15] Barkjohn K K, Bergin M H, Norris C, et al. Using low-cost sensors to quantify the effects of air filtration on 

indoor and personal exposure relevant PM2. 5 concentrations in Beijing, China [J]. Aerosol and Air Quality Research, 

2020, 20(2): 297-313. 

 

113




