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Abstract: Textiles are important raw materials in industry and life, and China's textile 
industry plays a key role, but there are more than 80 kinds of surface defects in fabric 
production, which affect the quality and development of the industry. Current detection 
algorithms have problems such as insufficient accuracy and limited application scenarios. 
Manual detection and traditional machine vision methods also have obvious defects. 
Although algorithms based on deep learning have applications, they have their own 
shortcomings. Therefore, an improved RT-DETR fabric detection algorithm RT-FDTR is 
proposed in this study: optimizing the backbone network, introducing C2f_AdditiveBlock 
module to enhance feature extraction ability; designing DHSA-AIFI module to enhance 
small target detection and anti-interference ability; developing SCOK-CCFF feature 
pyramid to optimize feature fusion. Experiments on the fabric defect dataset of Aliyun 
Tianchi show that the P, R and AP50 of the improved model are 82.2%, 77.1% and 76.5% 
respectively, which are 6.9%, 2.5% and 3% higher than those of the original RT-DETR-
r18, and the parameters are reduced by 20.6%. The detection speed is increased by 9.7FPS, 
which meets the accuracy and real-time requirements of fabric defect detection in industry. 

1. Introduction 

Textile is a kind of raw material widely used in clothing in industrial and living scenes, and has 
irreplaceable social value. China ranks first in the world in terms of textile production and export. 
Textile industry is one of the pillar industries of China's national economy and plays a key role in 
national development. There are more than 80 kinds of surface defects in the production process of 
cloth, which affect the quality of textiles and thus affect sales, limiting the development of textile 
industry[1-2], so accurate detection of cloth surface defects is indispensable[3]. The accuracy of 
current fabric defect detection algorithms cannot meet the industrial requirements, and most 
algorithms are only suitable for specific types of fabric defect detection. However, in practical 
industrial applications, fabric defects vary in size and shape, and existing detection algorithms are 
not suitable for such complex scenarios. 

Early fabric defect detection relied on the human eye to complete. This method is not only 
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inefficient, but also has high labor cost, and often misses and misjudges in the detection process[4]. 
Nowadays, there are new developments in detection methods, one of which is based on traditional 
machine vision, including model analysis, spectral analysis and statistical analysis. Among them, 
model analysis method constructs texture in image into random or deterministic model, which can 
be used to deal with random changes of fabric background texture. However, this method is 
extremely complex and computationally intensive, which is not suitable for detecting small targets. 
Spectral analysis is used to extract periodicity of texture primitives from spectral features of images. 
However, defects on complex surfaces cannot be detected; statistical analysis methods use the 
statistical characteristics of the relationship between image gray levels to extract the features of 
defective fabrics. When used alone, they require prior knowledge and are only effective for a few 
types of defects. These traditional methods need to design different feature extraction algorithms for 
different types of defects, which are not suitable for practical industrial applications. 

Another category is target detection algorithms based on deep learning. With the rapid 
development of deep learning, it has been applied to a variety of scenarios such as image 
classification, object detection and fault diagnosis. Defect detection methods based on deep learning 
have been applied to various industrial products, especially liquid crystal panels, metal materials 
and textiles. In recent years, many scholars have proposed feasible textile testing methods. For 
example, Liu[5] et al. proposed a fabric defect detection method based on context-aware attention 
cascade feedback network, and designed a parallel context extractor to capture multi-scale context 
information to achieve accurate defect location. Chen[6] et al. used label smoothing strategy in 
training phase and data enhancement technique to compensate for imbalance of data set, reducing 
the number of model parameters without reducing model accuracy, and improving average 
detection accuracy by 1.3%. Zhang[7] et al. add coordinate attention mechanism to YOLOv8n 
model based on YOLOv8 algorithm. The improvement enhances the network's ability to extract 
fabric defect features. On DAGM10 dataset, mAP reaches 79.20%, detection speed reaches 
95.4FPS, and can meet the requirements of online real-time detection with low computing resource 
requirements. It can be deployed in edge intelligent computing equipment, which promotes the 
application of textile defect automatic detection technology in industry. Hülya Gökalp Clarke[8] et 
al. constructed a convolutional neural network (CNN) for fabric defect detection, employing a 
cyclic learning rate scheduler and trained and validated using an original dataset containing three 
fabric types and four types of defects. This model can effectively identify many kinds of fabric 
defects. Li[9] proposed a fabric defect detection method combining hybrid attention transformer 
(HAT) and improved cascaded R-CNN (SPCNet), which effectively improved the detection 
performance of multi-class fabric defects. Zhang[10] et al. proposed several methods for color 
fabric detection, which used attention-based feature fusion to generate adversarial network and 
quadtree attention-based U-shaped Swin Transformer network to detect fabric defects respectively. 
By introducing some attention modules to enhance the extraction of defect features, and using U-
shaped network to realize pixel-level reconstruction of images, the detection and location accuracy 
were improved. However, this method is mainly implemented through unsupervised detection by 
CNN. This learning method relies on random initialization and data distribution, resulting in the 
learned features being inaccurate or biased, and requiring more computing resources and time. 

To solve these problems, the RT-DETR algorithm is faster, more accurate and more real-time 
than other mainstream algorithms. In this paper, a fabric detection algorithm based on improved 
RT-DETR is proposed. The experimental results show that the speed and accuracy of the whole 
model meet the industrial requirements. 
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2. Improved RT-DETR fabric defect detection method 

As the first real-time end-to-end target detector, RT-DETR consists of backbone network, hybrid 
encoder, Transformer decoder and auxiliary prediction header[11]. Backbone network extracts 
multi-scale features through CNN, providing low-level, middle-level and high-level feature 
representations for subsequent processing; hybrid encoder consists of attention-based (adaptive 
feature integration, AIFI) module and CNN-based CCFM module, AIFI module enhances the 
hierarchy and richness of advanced features, CCFM (cross-level cross-feature fusion module) 
facilitates fusion and interaction of different levels of features; processed features generate target 
predictions through Transformer decoder, which assist prediction head to further optimize detection 
performance. RT-DETR improves target query initialization through IOU aware queries and can 
adjust decoder layers to optimize real-time performance. 

In order to cope with the complexity of the environment and the limitation of the model size in 
fabric defect detection, a lightweight enhancement model RT-FDTR is proposed based on the real-
time detection transformer with resnet-18 backbone (RT-DETR-r18). The structural design of the 
model is shown in Figure 1. Firstly, additive similarity function (CATM) is introduced into the 
backbone network to enhance the multi-scale feature extraction ability of the model in fabric defect 
detection. In complex scenes of cloth defects and cloth background textures, the recognition ability 
of defect targets is improved. This not only provides richer and more accurate feature information 
for subsequent modules, but also effectively reduces background interference and enhances the 
discrimination between target and background. On this basis, DHSA-AIFI module further 
strengthens the feature expression extracted by AdditiveBlock module by using multi-scale multi-
head self-attention mechanism. DHSA-AIFI's multi-scale feature ensures that the model can capture 
the features of different scale targets when the defect target size varies greatly, and improves the 
discrimination ability between target and background by enhancing the learning of context 
information. DHSA-AIFI thus provides the model with an enhanced representation of detail 
information in complex background environments, enabling the model to better adapt to target 
defects at different scales, in different backgrounds and under different lighting conditions. Finally, 
SCOK-CCFF feature pyramid structure optimizes the multi-scale information extracted by 
backbone network and the detailed features aggregated by DHSA-AIFI by efficiently fusing 
shallow and deep features. SCOK-CCFF not only improves the efficiency of multi-scale 
information utilization, but also makes the model more robust in multi-scale target detection, 
especially for small targets. SCOK-CCFF can effectively enhance the discrimination between object 
and background in complex environment with low contrast between cloth defects and background 
texture, so that the model can accurately detect defects in complex background and improve the 
robustness of detection. 

To sum up, the backbone network provides enhanced multi-scale features, DHSA-AIFI module 
enhances feature expression through multi-scale self-attention mechanism, and SCOK-CCFF 
feature pyramid structure further improves the robustness of the model and the recognition ability of 
small targets by optimizing the fusion efficiency of features. The synergy of these modules ensures 
that the RT-FDTR model can more accurately identify and locate defects in complex environments, 
especially in dealing with small targets and background disturbances, improving the overall 
detection accuracy and robustness of the model. The following sections detail the specific design 
details of the enhanced model. 
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Figure 1: Network structure diagram. 

2.1. Improvement of backbone network 

RT-DETR's backbone network is based on a (residual network, ResNet) architecture, which uses 
a four-layer (basic residual block, BasicBlock) structure to balance computational efficiency and 
performance[12]. However, BasicBlock has limitations in cloth defect detection tasks: small 
receptive fields limit the capture of global context information, making it difficult to process global 
information of large targets and local details of small targets simultaneously; lack of multi-scale 
feature fusion leads to a decline in detection accuracy under complex backgrounds; in addition, 
higher parameters increase the computational burden and affect the efficiency of model 
deployment. 

 
Figure 2: Structure diagram of C2f_AdditiveBlock module. 
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In order to solve these problems, this paper proposes a C2f_AdditiveBlock module based on 
CAS-ViT (Convolutional Additive Self-attention Vision Transformers). The module reduces the 
dimensionality by 1×1 convolution, and then splits the dimensionality reduced features into two 
branches according to 1:1. Branch 1 is directly transferred across stages, retaining the low-
frequency basic features of the original fabric texture. Branch 2 enters the spatial-channel dual-
domain attention interaction process and is processed by Bottleneck module. Bottleneck is divided 
into spatial attention branch and channel attention branch for dual-domain feature fusion. 
Meanwhile, SENet integrates channel information by 1×1 convolution. The similarity function is 
innovatively defined as the sum of the context scores of Query and Key, avoiding complex 
operations such as matrix multiplication and Softmax, and reducing computational complexity. 
Secondly, referring to the convolutional additive self-attention (CAS) block hybrid architecture, the 
input features and output features are connected by residuals, so that the underlying network is 
realized by convolution, and a good balance is achieved between computational efficiency and 
deployment. 

Figure 2 shows the structure diagram of the C2f_AdditiveBlock module. The module inputs the 
size of the feature diagram as C×H×W, and input H W Cx R × ×∈ . Firstly, the dimension of input 
features is reduced to C/2×H×W by 1×1 convolution layer, which reduces the amount of subsequent 
calculations. Then, the dimensionality reduced features are divided into two branches along the 
channel dimension. Branch 1 directly transfers the split features across stages and waits for feature 
fusion with the output features of branch 2. Finally, the original dimension is restored through 1×1 
convolution layer, and the input features and output features are connected through residuals. 

Bottleneck splits the input into spatial domain attention branches and channel domain attention 
branches in branch 2, followed by feature fusion through the operation of "stacking." The spatial 
attention structure diagram is shown in Figure 3. First, the receptive field is enlarged by a 3×3 
convolutional layer, then the channel is compressed by a 1×1 convolutional layer, and then the 
Sigmoid activation function is used to generate the spatial attention weight map. The spatial 
attention branch is specifically expressed as:  

1 1 3 3( ( ,Re , ( )))sx Sigmoid D D LU BN x x× ×=                                    (1) 

 

Figure 3: Spatial attention branches. 
For channel-domain attention, we refer to SENet, which, as shown in Figure 4, does not use 

channel reduction, but instead uses 1×1 convolution to integrate information between channels: 

1 1 1 1( ( ( )))cx Sigmoid D P x x× ×=                                            (2) 
Where P represents adaptive pooling, D is a grouped convolutional layer, and the default number 

of packets is set to the number of channels. The Bottleneck module in Branch 2 stacking these two 
operations results in a feature map of the interaction between space and channel domains, denoted 
as ( )xΦ . 
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Figure 4: Channel domain attention branch. 

 
Figure 5: Conv Additive Self-Attention. 

Finally, we define the similarity function as the sum of the context scores of Q(Query) and 
K(Key), i.e. branch 1 cross-stage features and branch 2, adding fused features as shown in Figure 5: 

( , ) ( ) ( )Sim Q K Q K= Φ +Φ                                                (3) 

Query, Key and Value are obtained through independent linear transformation, qQ W x= ,

kK W x= , where vV W x= , qW , kW  and vW  are learnable weights, ( )Φ   is a context mapping 
function, which contains necessary interactive information, and the complexity can be reduced by 
adding methods while retaining effective information. Finally, the output can be expressed as: 

( ( ) ( ))O Q K V= Γ Φ +Φ                                                         (4) 

Where ( ) N CR ×Γ ∈  represents a linear transformation of the set of context information. 
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2.2. Design the DHSA-AIFI module 

As the core component of RT-DETR, AIFI module weights and fuses multi-scale features 
through adaptive attention mechanism to improve the accuracy and robustness of target detection. 
However, when dealing with complex backgrounds (such as lighting changes, complex textures) 
and multi-scale targets for cloth defects, multi-head self-attention in the AIFI module faces 
challenges: differences in visual characteristics caused by lighting and weather changes make multi-
head self-attention difficult to adapt, especially when the target and background colors are similar, 
which may lead to information loss. In addition, traditional self-attention relies too much on local 
features, which makes it difficult to deal with occluded objects and affects the integrity of objects. 
In multi-scale target processing, traditional mechanisms are difficult to dynamically adjust the 
weights of different scale targets. Small-scale targets are easily submerged by large-scale targets, 
and the information interaction between scales is insufficient, which reduces the detection accuracy. 
Based on this, this study introduces Dynamic-range Histogram Self-Attention (DHSA) into AIFI 
module, and designs DHSA-AIFI module, whose structure diagram is shown in Figure 6. DHSA-
AIFI can effectively capture long-distance semantic correlation in cross-layer features, improve 
cross-scale feature fusion, suppress background noise interference, and enhance the processing 
ability of multi-scale targets and complex backgrounds. 

 
Figure 6: DHSA-AIFI. 

The core of DHSA is to use binning logic to achieve long-distance similar feature aggregation, 
dual-path design to balance global context and local details, and introduce dynamic range 
convolution to enhance non-local feature interaction. First, the input data is subjected to feature 
extraction at different scales. The extracted feature map C H WF R × ×∈  is divided into two branches 
along the channel dimension, the main branch F1 and the auxiliary branch F2, occupying 2C/3 
channels and C/3 channels respectively. F1 is sorted horizontally (Sorth) and vertically (Sortv) so 
that pixels of similar intensity are clustered spatially to obtain 1

sortedF . 

 1 1( ( ))sorted
v hF Sort Sort F=                                                   (5) 

The sorted F1 and F2 are spliced, the channel range is compressed by 1×1 point-by-point 
convolution, and then the features across the dynamic range are extracted by 3×3 depth convolution. 

 3 3 1 1 1 2( ( ( , )))d sorted
drconvF Conv Conv Concat F F× ×=                                 (6) 

Where Concat  is the channel dimension splicing, 1 1Conv ×  compresses the number of channels to 
C . Second, the self-attention module is replaced by a two-path histogram self-attention, the output 

drconvF  is convolved over the dynamic range, sorted by pixel intensity and generated with index d, 
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reshaped into a one-dimensional sequence: 

 , ( ( ))C HW
C H W drconvV d Sort R F×
× ×=                                             (7) 

Where C HW
C H WR ×
× ×  is the feature vectorization operation, C HWV R ×∈ , and then the one-dimensional 

sequence is divided into B bins sorted from high to low pixel intensity values, each bin contains 
/S HW B=  pixels, and the feature shape is C B S× × . Then attention fusion is performed by using 

two-path attention, which is divided into global interval attention (BHR) and local frequency 
attention (FHR). 

In the global interval attention, Q1, K1 are arranged by sorting index d: 

1 1 ,1, ( ( , ))QKQ K Split Gather F d=                                               (8) 

Q1 and K1 reshape to box dimension C B S× × , calculate inter-box attention: 

 1 1( ) ( )max( ) ( )B B
B B

R Q R KA soft R V
k

Τ⋅
= ⋅                                    (9) 

Where BR  is the box dimension remodeling and k is the number of attention heads. 
In local frequency attention, Q2, K2 are also arranged by index d : 

 2 2 ,2, ( ( , ))QKQ K Split Gather F d=                                      (10) 
Q2 and K2 are remodeled to frequency dimension C S B× × , calculate attention in box: 

 
2 2( ) ( )max( ) ( )F F

F F
R Q R KA soft R V

k

Τ⋅
= ⋅                                (11) 

Where FR  is the frequency dimension remodeling, and each bin contains only B  adjacent 
intensity pixels. 

Finally, attention fusion is performed, and the resulting elements of the two paths are multiplied 
to restore the original spatial order: 

 ( , )B FA Unsorted A A d=                                             (12) 
Where Unsorted  restores the feature to its original spatial location by index d . 

2.3. Improve the cross-scale feature fusion module 

RT-DETR uses CCFF feature pyramid structure for cross-scale feature fusion. First, the output 
feature channels are mapped to 256 through convolutional layer, and then multi-scale feature 
integration is realized through top-down and bottom-up bidirectional pairing fusion. However, 
CCFF is obviously inadequate in detecting small objects with cloth defects. Because of the small 
defect size, the traditional pyramid structure relies on high-level features (P3, P4, P5) for detection, 
but downsampling leads to the loss of detail information, which can not fully express the small 
target features, and is easy to miss or misdetect. In addition, defects are similar in color to 
background texture, high-level semantic information is difficult to distinguish between target and 
background, illumination changes and occlusion further weaken target edges and details, and reduce 
detection performance. Although adding P2 layer can supplement small target information, it will 
significantly increase the calculation amount and post-processing complexity, and it is difficult to 
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meet the real-time detection requirements. 
In order to solve these problems, SCOKCCFF feature pyramid structure is proposed in this 

study, which aims to optimize the feature expression of small targets, improve the discrimination 
ability between target and background, reduce the computational burden and improve the efficiency 
of multi-scale feature fusion. SCOK-CCFF is structured as shown in Figure 7 and consists of two 
core modules: spatial pyramid diluted convolution (SPDConv) and cross stage partial omnikernel 
(CSP-OmniKernel). 

 
Figure 7: SCOK-CCFF network structure. 

SPDConv module is introduced after P2 feature layer to solve the problem of insufficient detail 
expression of small targets. The P2 layer has high resolution and contains rich details of small 
targets, but direct use for detection will lead to a surge in computational effort. SPDConv efficiently 
processes P2 features through lightweight convolution operations, de-noising and extracting key 
small target information, which is then upsampled and passed to the P3 layer. In P3 layer, the 
optimized P2 features and P3 features are fused through Concat, which effectively makes up for the 
deficiency of P3 layer in small target expression, and avoids the computational burden brought by 
directly introducing P2. For the fusion of P3 and P2, traditional stitching or convolution operations 
cannot fully model the relationship between features at different scales, resulting in information 
redundancy and inefficient expression. Therefore, the CSP-OmniKernel module is introduced into 
the fused features for deep integration. CSP-OmniKernel module draws lessons from CSP (Cross 
Stage Partial) design idea and divides input characteristics into two parts: one part is directly 
transmitted, and the other part enters OmniKernel module for in-depth processing. OmniKernel 
optimizes features through multi-level design of global, large and local branches: global branch 
utilization Feature Spatial Attention Module (FSAM)(dense channel attention module (DCAM) 
captures long-range context information to optimize the distinction between target and background; 
large branches extract medium-scale structures through 32×32 convolution to maintain semantic 
information integrity; local branches focus on edge details and morphological features of small 
targets through 1×1 and 32×1 convolution to achieve multi-scale feature expression and interaction. 
The collaborative design of SPDConv and CSP-OmniKernel module effectively solves the 
problems of detail loss, target and background discrimination difficulty and computational burden 
in cloth defect detection, and significantly improves the accuracy and real-time performance of 
small target detection in complex scenes. 

164



3. Experiments and results 

3.1. Experimental environment 

The computer operating system used in this experiment is Windows11 64-bit, the processor 
model is i7- 11800H, the graphics card model is NVIDA GeForce RTX3060, the main frequency is 
2.3GHz, 16G machine with RAM, CUDA version is 11.8, the programming language is Python 3.8, 
and the deep learning framework Pytorch2.0.1. 

The initial learning rate is set to 0.01, the batch size is set to 16, the rounds are 200 rounds, the 
input image size is 640× 640, the weight attenuation coefficient is 0.00005, the IoU threshold is set 
to 0.5, and the confidence threshold is set to 0.8. 

3.2. Data sets and preprocessing 

Table 1: Fabric numerical label and corresponding defect name. 

Numerical Label Defect Name Numerical Label Defect Name 

1 Hole 8 Coarse Weft 

2 Dirty Mark 9 Jacquard Skip 

3 Three Threads 10 Starch Lump 

4 Knot 11 Warping Knot 

5 Coarse Warp 12 Star Skip 

6 Loose Warp 13 Broken Spandex 

7 Broken Warp 14 Thick-thin Place 

The dataset used in this experiment is derived from the fabric defect dataset of the Alibaba Cloud 
Tianchi Competition. This paper applies 14 different defect types, and the entire dataset consists of 
5,913 images. To meet the input requirements of the RT-DETR model, all images have been 
adjusted to 640×640 pixels. To further increase the quantity of the dataset, we have expanded the 
dataset and performed data augmentation operations on the original dataset. The dataset was 
expanded to 8,000 images mainly through flipping, splitting and adding noise. The expansion of the 
dataset can effectively enhance the generalization ability of the model, thereby reducing the 
possibility of overfitting. During the model training period, we set the ratio of the training set, test 
set to validation set at 7:2:1 to ensure the effective learning and validation of the model. In this 
experiment, each defect category is assigned a numerical label, and the corresponding defect names 
are summarized in the Table 1. 

3.3. Evaluation index 

In order to test the improved model better, R (Recall), P (Precision), mAP (Mean average 
precision), prediction time of a single picture, Params and Giga floating point operations per second 
(GFLOPs) are selected as evaluation indexes of the model for detecting fabric defects. The 
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equations are as follows: (13)~(15). 
Accuracy represents the proportion of all prediction results including correct prediction results, 

as shown in Equation (13): 

100%TPP
TP FP

= ×
+                                                       (13) 

Recall represents the proportion of all targets correctly predicted, as shown in equation (14): 

100%TPR
TP FN

= ×
+                                                      (14) 

Average precision represents the average of accuracy for all categories: 
1

0
( )AP P R dR= ∫                                                         (15) 

Where TP is the number of defects accurately identified as positive cases; FP is the number of 
defects incorrectly predicted as positive cases;FN is the number of defects incorrectly predicted as 
negative cases. 

3.4. Ablation experiments 

Three improvements are made to the original RT-DETR-r18 model: A: BasicBlock is replaced 
by C2f_AdditiveBlock; B: AIFI is replaced by DHSA-AIFI; C: SCOK CCFF feature pyramid is 
designed for multi-scale feature fusion. Each improved module was separately integrated into the 
original model to verify its effectiveness. The corresponding results are shown in the table, where √ 
indicates that the corresponding enhancement module is used, × indicates that it is not used, and the 
best index is indicated in bold. 

As can be seen from Table 2, after replacing BasicBlock with C2f_AdditiveBlock, the model 
performance is significantly improved, P, R and AP50 are improved by 1.4%, 2.1% and 1.6% 
respectively, the detection speed is improved by 4.4 frames/s, and the number of parameters and 
floating point calculations are reduced by 23.6% and 14.7% respectively. The results show that the 
improvement of backbone network can effectively enlarge the receptive field of feature extraction 
and enhance the perception ability of multi-scale target features. For the improvement of AIFI, 
DHSA-AIFI makes P increase by 4.1%, R increase by 0.6%, parameter quantity and calculation 
quantity decrease slightly, but it improves the ability to capture fine features and effectively 
suppresses the interference of complex background. The parameters and floating-point operations 
increase slightly after SCOK-CCFF is added, which may be due to the introduction of shallow high-
resolution feature information, which increases the learning difficulty of the model. However, the 
maximum performance improvement was also achieved, with R and AP50 increasing by 3.7% and 
4.8% respectively, verifying its effectiveness in detecting fine fabric defects. Compared with RT-
DETR-r18, P, R and AP50 of the improved RT-FDTR model are increased by 6.9%, 2.5% and 3%, 
parameters and computation are reduced by 20.6% and 8.7% respectively, detection speed is 
increased to 59.7, and a good balance is achieved among speed, accuracy and computation. These 
results verify the effectiveness of the improved model. 
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Table 2: Ablation experiment result. 

Experiment 
number 

A B C P/% R/% AP50/% FPS Params/M Flops/G 

1 × × × 75.3 74.6 73.5 50.0 19.9 57.3 

2 √ × × 76.7 76.7 75.1 54.4 15.2 48.9 

3 × √ × 79.4 75.2 74.8 53.1 20.1 58.4 

4 × × √ 81.6 78.3 78.3 56.5 21.3 58.1 

5 √ √ √ 82.2 77.1 76.5 59.7 15.8 52.3 

3.5. Contrast experiment 

In order to further verify the performance of the improved model, this study selects seven 
advanced target detection algorithms to conduct comparative experiments on the same dataset. 
These seven algorithms include lightweight models (YOLOv5, YOLOv6, YOLOv8, YOLOv11) 
and network models based on Transformer architecture (RT-DETR-r18, RT-DETR-r34) as well as 
Faster R-CNN. The performance results for each network architecture are shown in Table 3. 

Table 3: Comparative experiment result. 

model P/% R/% AP50/% 

YOLOv5 64.2 59.3 63.6 

YOLOv6 65.4 60.2 62.8 

YOLOv8 74.5 72.2 72.1 

YOLOv11 73.3 70.0 70.6 

RT-DETR-r18 75.3 74.6 73.5 

RT-DETR-r34 77.4 75.2 75.6 

Faster R-CNN 60.3 58.7 62.9 

RT-FDTR 82.2 77.1 76.5 

From the data in Table 2, it can be seen that the recognition accuracy and recall rate of the 
improved model based on RT-DETR proposed in this paper reach 82.2% and 77.1% on the dataset, 
and 𝑚𝑚𝐴𝐴𝐴𝐴0.5 reaches 76.5%. For AP50, compared with YOLOv5, YOLOv6, YOLOv8, YOLOv11, 
Fastet R-CNN, the recognition accuracy and recall rate are improved by 12.9%, 13.7%, 4.4%, 5.9% 
and 13.6% respectively. This is because the features extracted by CNN have limited modeling 
ability for global context information, while the improved algorithm can extract more detailed 
shallow features. Compared with RT-DETR-r18 and RT-DETR-r34, the AP50 of the improved 
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model increased by 3% and 0.9% respectively. Compared with other mainstream networks, the 
improved model based on RT-DETR has better algorithm performance, which shows that the 
improved model can extract feature information better in the case of complex interference, locate 
the target region, and thus improve the recognition accuracy and recall. The comprehensive 
performance is better than other mainstream target detection models. 

As shown in Figure 8, the detection results of the original RT-DETR-r18 model and RT-FDTR 
model are represented by rectangular boxes, and the category labels and confidence levels of 
recognition are marked. 

 
(a)                                             (b)                                         (c) 

Figure 8: Detection result comparison: (a) ground truth. (b) RT-DETR detect result. (c) RT-FDTR 
detect result. 

Figure 8 (b) shows that the RT-DETR-r18 model has poor detection ability for cloth defects; 
Figure 8 (c) shows that the RT-FDTR model has greatly improved detection effect for cloth defects 
compared with the original model, further proving the effectiveness of the improved model. 

4. Conclusions 

In this paper, a lightweight fabric defect detection network RT-FDTR is proposed to solve the 
problems of traditional fabric defect plus memory algorithm, such as low accuracy, poor real-time 
performance and weak adaptability to complex scenes. Firstly, AdditiveBlock and CSP in CAS-ViT 
are introduced to optimize the backbone of the network, expand the receptive field, and improve the 
ability of extracting global texture and multi-scale defect features of cloth. Secondly, a dynamic 
range histogram self-attention mechanism is designed to realize cross-layer long-distance semantic 
association capture through dual-path structure, which strengthens the ability to capture details of 
small targets and complex backgrounds, suppresses noise interference, and improves the 
adaptability of the model to multi-scale targets. 

168



Finally, SCOK-CCFF feature pyramid is developed, and small target information is extracted 
through SPD-Conv denoising. Combined with CSP-OmniKernel deep integration feature, SCOK-
CCFF feature pyramid is proposed, which significantly improves small target detection accuracy 
and background discrimination ability. The researchers use the improved RT-FDTR to analyze 
cloth data sets. 

Finally, the recognition rate, recall rate and average accuracy are 82.2%, 77.1% and 76.5% 
respectively, which are improved by 6.9%, 2.5% and 3% compared with the original model, and the 
parameter quantity is reduced by 20.6%, and the calculation speed is improved by 9.7 frames/s, 
which meets the requirements of industrial production for cloth defect detection. The RT-FDTR 
fabric defect detection method proposed in this study can meet the actual production requirements. 
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