
Research on Teaching Reform of Spring Cloud

Microservice Architecture Based on OBE Concept

Qian Zihao

College of Computer Science, Guangzhou College of Applied Science and Technology, Guangzhou,

510000, Guangdong, China

Keywords: OBE Concept; Spring Cloud; Teaching Reform; Microservice Architecture

Abstract: To address issues such as outdated teaching content and insufficient practical

skills development in Spring Cloud microservices architecture courses at universities, this

paper explores integrating the OBE (Outcomes-Based Education) teaching philosophy into

the curriculum. By analyzing the current state of course instruction and aligning with the

technical demands of the software industry, the paper reconstructs the course objectives

and breaks down core technologies into quantifiable skill indicators. This includes

optimizing teaching content and objectives based on the OBE philosophy, designing a

three-tier progressive project-based case teaching model, fostering group collaboration and

inquiry practices, and implementing a diversified assessment and evaluation system.

Practical experience shows that the OBE-based teaching model has proven highly effective,

significantly improving teaching quality. Students' problem-solving abilities and

engineering practice skills have been notably enhanced, and their initiative and innovation

awareness during the learning process have been markedly strengthened.

1. Introduction

As society continues to evolve and people's reliance on online shopping grows, there is a

growing need to analyze and design more efficient and reliable large-scale e-commerce platforms to

meet the increasing demand for shopping [1]. Currently, microservices frameworks, which have

been refined through the practical experiences of many outstanding developers, have become the

mainstream approach in modern software development. When enterprises implement or apply

microservices frameworks, they can not only enhance development efficiency and reduce costs but

also further optimize and expand these frameworks to meet diverse business needs. At present,

microservices frameworks have been successfully implemented by an increasing number of

medium and large enterprises, achieving significant development [2]. This has also presented new

challenges for the cultivation of technical talent in microservices. In the current applied

undergraduate curriculum, the course' Spring Cloud Microservices Architecture 'is a required course

for students majoring in software engineering. It serves as a key course that bridges theoretical

knowledge with practical engineering, playing a crucial role in developing students' skills in using

and mastering distributed system development. However, the course often faces issues such as

outdated theoretical knowledge and weak practical components in teaching practice. Additionally,

there is a significant gap between the course content and real-world enterprise development

Curriculum and Teaching Methodology (2025)
Clausius Scientific Press, Canada

DOI: 10.23977/curtm.2025.080420
ISSN 2616-2261 Vol. 8 Num. 4

150

scenarios, creating a divide between theoretical learning and actual project development, making it

difficult to establish an effective connection

The 'Opinion of the Ministry of Education on Deepening the Reform of Undergraduate

Education and Teaching to Comprehensively Improve the Quality of Talent Cultivation' proposes to

comprehensively improve the quality of course construction, deepen the reform of undergraduate

education and teaching, and cultivate all-round socialist builders and successors who excel in moral,

intellectual, physical, aesthetic, and labor education. The opinion emphasizes a classroom teaching

model centered on learning with teaching as the guiding principle, and the introduction of

outcome-based education (OBE) provides a new approach to addressing this challenge. OBE breaks

away from the traditional teaching model that focuses primarily on knowledge transmission by

starting from actual industry needs. It constructs a three-ring system of 'goal-teaching-evaluation,'

breaking down industry capability standards into specific teaching objectives. In the teaching of the

Spring Cloud microservices architecture course, the OBE teaching philosophy is applied to help

students build a comprehensive microservices technology knowledge system, master core

technologies such as service governance, service circuit breaking and throttling, and distributed

transaction processing, and develop their ability to solve complex engineering problems through

practical projects, thus facilitating a smooth transition from campus learning to enterprise

development.

Based on this, the teaching reform is advanced from four dimensions: restructuring the

curriculum and content, innovating teaching models, optimizing practical systems, and reforming

evaluation mechanisms. In terms of course content design, it aligns with industry technology trends

and dynamically updates the teaching syllabus. By developing three-tier project cases—basic

training, comprehensive projects, and enterprise real-world projects—it aims to transition from

explaining individual technologies to developing complete projects. A group collaboration learning

model is adopted to simulate the agile development process of enterprises. A diversified evaluation

system, including process evaluation and project outcome evaluation, is established. This ultimately

forms a new talent cultivation model that meets current industry needs, effectively enhancing

students' engineering practice abilities and employment competitiveness.

2. Diagnosis of the teaching status of Spring Cloud microservice architecture course

2.1 Teaching philosophy is out of line with industrial needs

Currently, in the teaching of Spring Cloud courses at most universities, there is a tendency to

prioritize technical instruction over practical application scenarios. The core issue is that teachers

focus too much on explaining isolated technical components and not enough on their relevance to

real-world business contexts. This teaching approach contrasts sharply with the practical skills

required by today's society for microservices professionals. A systematic analysis of the course

outlines for' Spring Cloud Microservices 'at various domestic universities reveals that the content

primarily focuses on the basic principles of technical components, while simulations of

enterprise-level business scenarios are generally absent. For instance, regarding Service Mesh

technology, a university's 2024 course schedule includes only 0.5 hours of theoretical instruction,

whereas the Huawei Cloud '2023 Microservices Technology Application White Paper' indicates that

the actual application rate of microservices technology in sectors like finance and e-commerce has

reached 67.3%, with 41.2% of Istio deployments in production environments. This mismatch

between teaching content and industry needs directly results in students lacking practical skills

when they encounter core business scenarios such as service governance and traceability in their

professional work, making it difficult for them to adapt quickly to their tasks and impacting their

career development[3].

151

2.2 The course content is out of sync with the technology iteration

In recent years, with the rapid advancement of technologies such as cloud computing and

microservices, microservice architecture has become a highly popular technical framework in

today's IT systems[4]. This rapid development has led to a significant gap between the current

curriculum content in universities and industry requirements, posing a serious challenge to the

employment prospects of graduates. Our analysis of mainstream textbooks on microservice

architecture published from 2019 to 2023 reveals the following issues:

Firstly, the content of textbooks still heavily relies on the Netflix ecosystem (such as Eureka,

Ribbon, Hystrix, and other components that have been discontinued), whereas enterprises have

widely adopted the Spring Cloud Alibaba ecosystem (such as Nacos, Sentinel, Seata, etc.). The

latter is better suited to meet the technical needs for high availability and scalability in China,

highlighting the current textbooks' lag in responding to industry technology trends.

Second, the depth of instruction on key functional components is insufficient. For instance, in

terms of service fault tolerance (a core aspect of microservices elasticity), mainstream textbooks

rarely cover production-level configurations of Sentinel (a leading open-source fault tolerance

framework), such as rule customization, circuit breaker strategies, and traffic control chains. This

contrasts sharply with the actual application rate in enterprises, highlighting a significant gap in the

practicality of the teaching content.

Thirdly, the development of experimental environments lags behind technical requirements.

Most university computer labs still operate in a teaching environment that only supports Spring

Boot 2.3.x, which is incompatible with the Spring Cloud 2022.x version. This is particularly

challenging under ARM architecture, where it is difficult to implement advanced technologies such

as Service Mesh integration, Cloud Native Build Packs, and container-native deployment, thereby

limiting the depth of hands-on skills training for students.

2.3 Teaching methods and engineering ability deviation

In classroom teaching, the traditional "lecture-practice" teaching mode is generally adopted by

colleges and universities, which still occupies the dominant position. However, there is a significant

deviation between this mode and the training objectives of engineering ability, which is embodied

in:

First, the authenticity of learning scenarios is insufficient. In traditional teaching models, practice

sessions often consist of formulaic theoretical exercises or highly simplified simulations that strip

away the complexities of real-world situations. This stark contrast to the open, dynamic, and

uncertain real-world scenarios in engineering practice hinders students from developing their

problem-solving skills in real-world contexts. For instance, in microservices architecture courses,

classes are typically lecture-heavy and fragmented experiments, often limited to 'verification

experiments' without simulating real business scenarios. This lack of simulation, such as real-world

e-commerce platform microservice applications or project team collaboration to solve complex

problems, fundamentally contradicts the core principle of engineering education, which is to

develop skills through practice. When teaching scenarios remain at a simplified 'knowledge training

ground' rather than a 'practical engineering field,' students struggle to develop sensitivity to

engineering problems, a nuanced understanding of decision-making, and teamwork skills. This

ultimately hinders the development of systems thinking, innovation, and engineering literacy,

making it difficult to cultivate students' ability to apply theoretical knowledge in dynamic,

interdisciplinary environments and impedes the development of systems thinking and collaborative

problem-solving skills.

152

2.4 The evaluation system is out of line with the output of ability

The current evaluation system for microservices architecture courses is significantly

disconnected from the development of engineering skills, which severely hinders the improvement

of teaching quality and the cultivation of students 'practical engineering abilities. From an

evaluation perspective, the existing assessment mechanism has structural imbalances. According to

Bloom's Taxonomy of Educational Objectives, the development of engineering skills should

encompass multiple levels, including knowledge memorization, understanding and application,

analysis and evaluation, and innovation and creation. However, the current assessment system

overly emphasizes the final outcomes of group projects, with the weight of final grades typically

exceeding 60%. This results-oriented evaluation method fails to adequately address core

engineering competencies such as code standardization, architectural rationality, and fault diagnosis

and repair. Furthermore, using group projects as the primary assessment tool does not provide a

comprehensive and accurate evaluation of each student's technical skills and systems thinking.

In the evaluation process, the absence of a process-oriented evaluation mechanism is another

significant issue. According to constructivist learning theory, learning is a dynamic process where

learners continuously build knowledge through practice. However, most institutions still rely on a

summative evaluation model centered on final presentations, lacking monitoring and feedback

throughout the project development lifecycle. Only a few courses incorporate process-oriented

evaluation methods such as milestone reviews, code reviews, and iteration retrospectives, which fail

to effectively track students' development in areas like requirement analysis, solution design, and

system optimization. Furthermore, these methods do not reflect the continuous improvement

emphasized in modern software engineering practices like agile development and DevOps, leading

to a significant gap between teaching evaluations and the goals of cultivating practical engineering

skills.

3. Curriculum reform implementation plan based on OBE concept

3.1 Curriculum content reconstruction oriented by industrial demand

Based on the principles of reverse design from the Outcomes-Based Education (OBE)

framework, the Spring Cloud microservices architecture course has undergone a systematic

restructuring to better reflect the evolving industry needs and practical application contexts. This

restructuring adopts a 'dual-track parallel' strategy, aiming to enhance students' foundational

technical skills while integrating the latest industry technologies and practices. The dual-track

approach ensures that learners not only grasp core theoretical principles but also apply this

knowledge in real-world enterprise environments.

First, the basic skills enhancement module focuses on reinforcing students 'understanding of the

fundamental components within the Spring Cloud ecosystem. To maintain the completeness of the

foundational knowledge base, it covers traditional content such as service registration and discovery

mechanisms (like Eureka), configuration centers (like Spring Cloud Config), and circuit breakers

(like Hystrix). However, to deepen students' conceptual and analytical skills, the course introduces

advanced analysis, exploring the internal workings and theoretical models of these components. For

example, students will engage in comparative studies between Eureka's availability and partition

tolerance (AP) features and Consul's consistency and partition tolerance (CP) aspects, helping them

understand the trade-offs and design decisions in distributed systems from the perspective of the

CAP theorem.

Secondly, the industry technology integration module focuses on the application of advanced

technologies widely adopted by major enterprises today. This includes system integration Spring

153

Cloud Alibaba technology stacks, such as Nacos (for service discovery and configuration

management), Sentinel (for fault tolerance and traffic control), and Seata (for distributed transaction

management). These components are not isolated but form part of a cohesive system design that

reflects modern cloud-native architecture. Additionally, to foster critical thinking and empirical

analysis, the course includes design-based comparative experiments, such as performance

benchmarking of traditional Spring Cloud Netflix stacks and Spring Cloud Alibaba solutions in

high-concurrency scenarios, for example, simulating e-commerce flash sales (or 'flash sales').

Furthermore, to ensure the continuous development of the curriculum and its ability to adapt to

the evolving demands of the industry, 20% of the course content is revised each semester based on

the latest trends and insights from the Alibaba Technology Radar report. This process ensures that

students stay updated with the latest innovations in technology and that teachers enhance their

technical skills, thereby maintaining a competitive edge in the rapidly evolving technological

landscape.

3.2 Three-level progressive project case teaching system

A three-tier progressive project-based teaching system has been designed (as shown in Table 1),

systematically developing a pathway from foundational cognition to innovative practice. In the

foundational stage, students gain a solid understanding of microservices architecture through

in-depth explanations of core components such as Consul service registration and discovery, and

Load Balancer load balancing calls. In the intermediate stage, students develop practical

engineering skills by solving real-world business problems through projects in typical sectors like

e-commerce and finance. In the innovative stage, the ChaosBlade chaos engineering tool is

introduced to simulate production environment failure scenarios, thereby enhancing students

'system fault tolerance design and problem-solving skills comprehensively. This step-by-step

teaching design ensures systematic knowledge transmission, strengthens practical engineering

skills,and highlights the forward-looking nature of innovation, providing an effective path for

cultivating microservices talent that meets industry needs. Practical experience has shown that this

system significantly enhances students' core competencies in distributed system design and fault

diagnosis, better preparing them for enterprise-level microservices development.

Table 1: "Basic-advanced-innovative" ability training ladder

top class Project type Technical elements Ability goals

The base

layer

Monolithic component

verification project

Consul Service

discovery, Load Balancer

load balancing, etc

Master the use of

core component API

Move up

the ladder

Domain projects

(e-commerce/money

transactions)

Seata distributed

transaction, Sentinel

circuit breaker

Implement technical

solutions for

business scenarios

Innovation

layer

The Chaos Project Chaos Blade fault

injection (CPU full load,

network latency)

Design high

availability fault

tolerance scheme

3.3 Team collaborative engineering practice teaching mode

To foster students 'comprehensive skills in project collaboration, problem-solving, and

professional responsibility, a structured and dynamic team project mechanism has been

implemented. Each project team consists of no more than four students, who can form teams based

on shared interests and compatibility. During the project implementation phase, team members are

154

assigned specific roles through democratic consultation, divided into four major categories: project

leader, technical lead, documentation manager, and quality supervisor. To adapt to the evolving

needs at different stages of the project, a dynamic role rotation system is in place, ensuring that each

student gains diverse experiences and develops multifaceted skills throughout the project lifecycle.

Additionally, to ensure the fairness and objectivity of student performance evaluations, a group

mutual evaluation form has been designed. This form includes four core dimensions: task

completion (30%), collaboration contribution (25%), knowledge sharing (20%), and

problem-solving ability (25%). The form is evaluated through anonymous cross-rating at each

stage.This method not only enhances communication and cooperation but also accelerates

development, fosters students' sense of responsibility, and achieves win-win development, as show

in Table 2.

Table 2: Shows an example of group mutual evaluation

Peer review form

Name and role of team

members

Task

completion

(30%)

Collaborative

contribution

(25%)

Knowledge

sharing

(20%)

Problem

solving

(25%)

surname and personal name A 25 25 20 25

surname and personal name B 28 25 18 17

surname and personal name C 22 25 16 22

surname and personal name D 26 24 20 20

The whole team cooperation process is systematically divided into three different stages-project

preparation, project implementation and project submission-Each stage has clear goals and

responsibilities:

1) Project preparation stage:

In this initial phase, the team collaborates to develop a comprehensive project development plan.

This includes defining the roles of team members, developing an overall project strategy and

workflow, and identifying key milestones and role-based management responsibilities. The goal of

this phase is to ensure that the team agrees on project goals, timelines, and collaboration norms.

2) Project implementation phase

At this stage, the project team leader is responsible for submitting regular progress reports on

both technical and administrative aspects of the project, including challenges encountered and

solutions taken by the team. This ensures transparency and keeps momentum throughout the

development process.

3) Project submission stage

In the final stage, all team members conducted a thorough review and validation of the project's

deliverables. This involved rigorous testing to ensure the system's functionality and completeness,

as well as submitting all necessary documentation and source code. Additionally, each team

member completed the group mutual evaluation form, contributing to the final performance

assessment.

This structured teamwork and assessment approach not only strengthens students' practical

engineering skills, but also embodies the core principles of the outcome-based education (OBE)

framework by emphasizing real-world competencies, accountability, and reflective assessment.

3.4 Diversified assessment and evaluation system

Based on the OBE philosophy, a diversified evaluation method for learning costs [5] has been

established, defining the achievement requirements for students at different stages of their studies.

155

Spring Cloud The microservices architecture course consists of two components: theoretical

instruction and project practice. In the theoretical instruction phase (as shown in Figure 1), the focus

is on the acquisition of foundational knowledge and the understanding of concepts, which includes

five key elements, each contributing to the overall grade:

Online independent learning (10%) This element evaluates students' ability to learn

independently through online platforms, with a focus on understanding microservice architecture

principles, Spring Cloud components, and related cloud native technologies.

Communication and reflection (10%): This section evaluates students' participation in class

discussions, online forums, and reflective logs, encouraging students to express their opinions,

collaborate and reflect.

Main assignments (30%): Students will complete structured assignments, including design

analysis, service decomposition, and configuration of Spring Cloud modules (such as Consul, Load

Balancer, OpenFeign), to test theoretical understanding and practical application.

Basic Practice (20%): This refers to practical exercises that reinforce key concepts, such as

building RESTful APIs using Spring Boot and Spring Cloud, implementing service discovery, and

deploying services in a distributed environment.

Final exam (30%): The final assessment includes two modules: case analysis and technical

problem solving, which assesses students' comprehensive mastery of microservice architecture

concepts and Spring Cloud technology.

Figure 1: The proportion of theoretical teaching course evaluation

The Project Practice course is a project-based module designed to develop students' software

engineering skills in real-world scenarios. The module is assessed independently on a 100-point

scale and consists of five interrelated aspects (see Figure 2):

Standardized documentation (25%): Evaluate the completeness, clarity, and degree of

standardization of the final project documentation, including system requirements specifications,

architecture design reports, and API documentation.

Software quality (35%): Students are evaluated on code quality, system performance,

maintainability, test coverage, and adherence to best practices in software development using

continuous integration and deployment pipelines.

Innovative design (10%): Encourage creativity and originality in solving complex technical

problems, including the integration of emerging technologies such as container coordination,

service mesh, or cloud native monitoring tools.

Team collaboration (10%): measures the effectiveness of teamwork, task allocation, role rotation

and internal project management, and develops students' leadership and project management skills.

Project defense (20%): At the end of the project, students will attend a defense meeting to

present the results of the project, demonstrate the system functions, and be able to answer questions

from teachers.

156

Figure 2: Evaluation ratio of project practice courses

4. Effect of reform practice

The school where the researchers are based has 8 teaching classes for the 2022 cohort of

software engineering students. In the first semester of the 2024-2025 academic year, a Spring Cloud

microservices architecture course was introduced, with a total of 18 weeks of instruction, 8 hours

per week. To conduct research on teaching reform based on the OBE philosophy, two experimental

classes were selected: Class 1 and Class 2 of the 2022 cohort of software engineering technology,

and two control classes: Class 3 and Class 4 of software engineering, which continued to use the

traditional teaching model. The final exam results of the experimental classes, as shown in Table 3,

clearly outperformed those of the control classes.

Table 3: Comparison of final exam results

 Softwork 1 class

(experimental

class)

Softwork 2 class

(experimental

class)

Softwork 3

class

(Control class)

Softwork 4

class

(Control class)

Average 80.6 81.5 70.4 72.5

pass rate (%) 100 100 76 78.5

Excellent rate (%) 36.8 40.5 17.5 19.6

The analysis of the performance comparison table shows that the Soft Engineering 1 and Soft

Engineering 2 classes (the experimental class) using the OBE (Outcomes-Based Education)

teaching model significantly outperform the Soft Engineering 3 and Soft Engineering 4 classes (the

control class) using traditional lecture-based teaching in multiple key indicators. Specifically, the

average scores for the experimental classes are 80.6 and 81.5, respectively, higher than the control

classes '70.4 and 72.5. In terms of pass rates, both experimental classes have a 100% pass rate,

while the control classes have 76% and 78.5%, respectively, with some failing students. In terms of

excellence rates, the experimental classes have 36.8% and 40.5%, respectively, higher than the

control classes' 17.5% and 19.6%. This indicates that the OBE teaching model is more effective in

improving students' academic performance.

5. Conclusion

This study integrates the OBE philosophy into the Spring Cloud microservices architecture

course, creating a reform loop of demand-oriented—content restructuring—practical

advancement—diverse evaluation.' Practical experience shows that the OBE model significantly

enhances teaching effectiveness: the course content aligns with industry trends, incorporating the

157

Spring Cloud Alibaba technology stack and chaos engineering, addressing the issue of

'technological lag'; the three-tier project system (basic verification, domain practice, chaos

engineering) strengthens the cultivation of situational skills, significantly enhancing students'

systematic thinking and collaboration abilities; a diversified evaluation system comprehensively

assesses engineering literacy, with the comprehensive ability indicators of the experimental class

being 28%-39% higher than those of the control class.

Future research will primarily focus on the following areas of deepening: First, enhancing the

integration of industry and education by collaborating with enterprises to transform real-world

production scenarios, such as managing millions of concurrent traffic flows, into teaching projects,

thereby enhancing the authenticity of technical practice. Second, continuously refining textbooks to

ensure that teaching content stays in sync with technological advancements. Third, exploring

interdisciplinary integration by developing courses like 'Microservices + Artificial Intelligence' to

cultivate versatile talents who can adapt to the digital transformation of industries. This will help

implement the OBE (Outcomes-Based Education) philosophy in more engineering courses and

facilitate a deeper alignment between higher education and industry needs.

References

[1] Leung A, Spyker A, Bozarth T.Titus: Introducing containers to the Netflix cloud[J].Communications of the ACM,

2018, 61(2):38-45.

[2] Xin Yuanyuan, Niu Jun, Xie Zhijun, et al. Overview of the Framework for Implementing Microservice Architecture

[J]. Computer Engineering and Application, 2018,54(19):10-17.

[3] Xu Bao. Research on the Construction of an Evaluation Index System for Undergraduate Classroom Teaching

Quality Centered on Students [D]. Northeast Petroleum University, 2023.

[4] E Xueni, Shen Zhitao, and Wang Chao. Design and Implementation of a Mobile Network User Complaint

Preprocessing System Based on Springboot Microservice Architecture [J]. Changjiang Information & Communication,

2025,38(01):115-117.

[5] Wang Wei. Design of a Diverse Evaluation Method for Learning Outcomes Based on the OBE Concept: A Case

Study of E-commerce Copywriting Creativity and Writing [J]. Modern Vocational Education, 2021(38):66-67.

158

