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Abstract: In this paper, we study the decision-making problem in the production process to 

maximize the net profit by using the unit net profit optimization model and the discrete 

snake optimization algorithm. Firstly, a sampling and testing scheme based on Bayesian 

method is proposed to design the prior distribution, update the posterior distribution and 

determine the termination conditions to output the minimum number of tests. Secondly, a 

two-layer optimization model of unit net profit is constructed to comprehensively consider 

the cost and profit of each link in production. Finally, the discrete snake optimization 

algorithm is used to solve the model, and the optimal solution is approximated through 

specific operation steps to obtain the best decision-making scheme and net profit, which 

provides a reference for production decision-making. 

1. Introduction 

In the production process, how to make optimal decisions to maximize net profit is a key issue for 

enterprises. Traditional decision-making methods are often difficult to consider the complexity and 

uncertainty of the various aspects of production [1]. This paper aims to solve this problem by Bayesian 

method and snake optimization algorithm and constructs a two-level optimization model of unit net 

profit, which realizes multilevel decision optimization more efficiently. 

Firstly, the sampling inspection based on Bayesian method is applied to design the prior distribution, 

update the posterior distribution and determine the termination conditions, to output the minimum 

number of inspections and accurately control the quality of parts while reducing the inspection cost 

[2]. Next, a two-layer optimization model of unit net profit is constructed, with the lower planning 

aiming to minimize the total cost of producing semi-finished products, and the upper planning pursuing 

the maximum net profit, which is a comprehensive consideration of cost and profit from spare parts to 

finished products [3]. Finally, the discrete snake optimization algorithm is used to solve the model, 

breaking through the limitations of traditional algorithms to quickly find the optimal solution. Through 

these methods, it provides a scientific basis for enterprises in the production decision-making and helps 

to improve economic efficiency. 
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2. Sampling detection and output based on Bayesian approach 

2.1 Optimized sampling detection based on Bayesian approach  

In this paper, a dynamic sampling detection method based on Bayesian method to optimize the 

number of detections is proposed. The detection program takes “draw one test one” as the basic 

sampling detection strategy, firstly, according to the nominal value given in the title, design the Beta 

prior distribution, update the posterior distribution according to the actual sampling situation, and 

terminate the sampling when the nominal value is lower (higher) than the lower limit (upper limit) of 

the confidence region, plot the curve equation about the number of samples and the number of 

defective products, construct the rejection domain (reception domain), and stop the sampling detection 

when the number of defective products falls into the rejection domain (reception domain). Construct 

the rejection domain (reception domain) and stop sampling when the number of detected defective 

products falls into the rejection domain (reception domain), make the choice of rejecting (receiving) 

the batch of parts and components, and output the minimum number of inspections [4]. 

2.1.1 A priori distributions 

This study designs a sampling scheme through a quality inspection case. The supplier claims that 

the nominal value of the parts is 0.1. Based on the meaning of the nominal value, consider that 0.1 is 

the upper limit of the defective rate of the parts supplied by the supplier, i.e., the defective rate of the 

parts is concentrated in the interval of [0,0.1]. The Beta distribution is chosen as the prior distribution 

Prior(𝑝): 

 𝑝 ∼ Beta(𝛼, 𝛽), (1) 

Where, to design a prior experience that is more in line with the nominal value, let 𝑃(0.1 ≤ 𝑝 ≤
1) = 0.05, the purpose is to let the inferiority rate in the Beta prior distribution fall into the interval 

[0,0.1] with a 95% probability. This condition is satisfied when 𝛼 = 0.1 and 𝛽 = 6. And the 

mean value of Beta distribution meets the actual situation of lower than the upper limit of defective 

rate, currently, the Beta distribution is shown in Figure 1. 

 

Figure 1. Beta a priori distribution plot 

2.1.2 Updating the posterior distribution 

After each sampling, new data is obtained. Let we sequentially test a total of n samples, among 
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which there are x inferior products. Then the likelihood function after testing can be expressed as: 

 𝐿(𝑝 ∣ 𝑥, 𝑛) = 𝑝𝑥(1 − 𝑝)𝑛−𝑥 (2) 

According to Bayes' law, the posterior distribution 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝑝|𝑥, 𝑛) is positively related to: 

 Posterior(𝑝 ∣ 𝑥, 𝑛) ∝ 𝐿(𝑝 ∣ 𝑥, 𝑛) ⋅ Prior(𝑝) (3) 

 For the Beta-distributed prior, the updated posterior is still the Beta-distribution with the following 

parameter updates: 

 𝑝 ∣ 𝑥, 𝑛 ∼ Beta(𝛼𝑝𝑜𝑠𝑡 , 𝛽𝑝𝑜𝑠𝑡) (4) 

2.1.3 Termination conditions 

The mathematical expression for the lower limit of the 95% confidence interval of the posterior 

distribution is: 

 𝑃(𝑝 > 𝑝0) = 1 − BetaCDF(𝑝0 ∣ 𝛼𝑝𝑜𝑠𝑡, 𝛽post ) (5) 

Require the following conditions to be met to terminate the sample and reject it: 

 BetaCDF(𝑝0 ∣ 𝛼post , 𝛽post ) ≤ 0.05 (6) 

That is, the lower confidence limit of the posterior distribution is greater than the nominal value, at 

this time, it is considered that the rate of defective products has exceeded the nominal value of 0.1, 

and the batch can be rejected. 

2.2 Sampling and testing program output 

2.2.1 Sampling and testing ideas 

Dynamic sampling and testing program that after sampling n times, found that the number of 

defective products for the first time is greater than x, immediately terminate the sampling and testing, 

and reject the batch of parts. Based on this strategy can be calculated based on the posterior distribution 

of the critical equation expression for the maximum number of samplings as: 

 ∫  
𝑝0
0
 
𝑡𝛼0+𝑥−1(1−𝑡)𝛽0+𝑛−𝑥−1

𝐵(𝛼0+𝑥,𝛽0+𝑛−𝑥)
𝑑𝑡 = 0.05 (7) 

The equation is a curvilinear equation for the number of samples 𝑛 versus the detection 𝑥. The 

condition is to let the nominal value be less than the lower limit of the confidence domain, and the 

curve is a critical curve where the nominal value coincides with the lower limit. 

2.2.2 Analysis of results 

As can be seen from Figure 2, when the number of sampling times gradually increases, each 

increase in the rejection condition of the number of substandard products requires more sampling tests, 

and the rejection domain gradually spreads. This sampling method designed in this paper and China's 

General Administration of Quality Supervision, Inspection and Quarantine is now the implementation 

of the GB/T 2828.1-2012 No [5].  
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Figure 2. Rejection domain of Case 1 detection scheme 

3. Establishment and Solution of Unit Net Profit Optimization Model 

3.1 Establishment of unit net profit optimization model 

In this section, to solve the problem of making the decision to maximize the net profit, the unit net 

profit optimization model is proposed, with 0-1 variables 𝛿𝑖, 𝜁, 𝛾 as the decision variables, and the 

net profit Profit as the objective function, and the following optimization model is finally summarized: 

 max Profit  = max{𝑛0 × 𝑤 − (𝑐1 + 𝑐2) − (𝛿1 × 𝑡1 + 𝛿2 × 𝑡2 + 𝜁 × 𝑛 × 𝑡3) (8) 

  s.t. 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 𝛿𝑖 ∈ {0,1}, 𝑖 = 1,2
 𝜁 ∈ {0,1},
 𝛾 ∈ {0,1},

 𝑛 = max{𝛿1(1 − 𝑝1) + (1 − 𝛿1), 𝛿2(1 − 𝑝2) + (1 − 𝛿2)},

 𝑛0 = 𝜁 × 𝛿1 × 𝛿2 × (1 − 𝑝𝑐) × 𝑛 + 𝜁 × 𝛿1 × (1 − 𝛿2) × (1 − 𝑝2) × (1 − 𝑝𝑐)

  +𝜁 × (1 − 𝛿1) × 𝛿2 × (1 − 𝑝1) × (1 − 𝑝𝑐)

  +𝜁 × (1 − 𝛿1) × (1 − 𝛿2) × (1 − 𝑝1) × (1 − 𝑝2) × (1 − 𝑝𝑐) + (1 − 𝜁) × 𝑛,

 𝑛1 = (1 − 𝜁) × 𝛿1 × 𝛿2 × 𝑝𝑐 × 𝑛 + (1 − 𝜁) × 𝛿1 × (1 − 𝛿2) × (𝑝2 + (1 − 𝑝2)𝑝𝑐)

  +(1 − 𝜁) × (1 − 𝛿1) × 𝛿2 × (𝑝1 + (1 − 𝑝1)𝑝𝑐)

  +(1 − 𝜁) × (1 − 𝛿1) × (1 − 𝛿2)(1 − (1 − 𝑝1)(1 − 𝑝2) + (1 − 𝑝1)(1 − 𝑝2)𝑝𝑐),

 𝑛2 = 𝜁 × 𝛿1 × 𝛿2 × 𝑝𝑐 × 𝑛 + 𝜁 × 𝛿1 × (1 − 𝛿2) × (𝑝2 + (1 − 𝑝2)𝑝𝑐)

  +𝜁 × (1 − 𝛿1) × 𝛿2 × (𝑝1 + (1 − 𝑝1)𝑝𝑐)

  +𝜁 × (1 − 𝛿1) × (1 − 𝛿2)(1 − (1 − 𝑝1)(1 − 𝑝2) + (1 − 𝑝1)(1 − 𝑝2)𝑝𝑐)

 (9) 

In this model, the decision variables are four 0-1 variables, and all the remaining parameters are 

known quantities given in the problem, which ultimately results in the optimization model of net profit 

per unit. 

3.2 Model Solution 

If part 1 fails and part 2 passes, resulting in a nonconforming finished product, the cost 𝑤0 in the 

disassembly cycle can be: 
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 𝑤0 = 𝑝𝑐
1−1(1 − 𝑝1) (𝑦 +

𝑐1

1−𝑝1
+ 𝑐3) + 𝑝𝑐

2−1(1 − 𝑝1) (2𝑦 +
𝑐1

1−𝑝1
+ 2𝑐3) (10) 

The above computation and judgment approach reduces the time complexity of the computation 

and removes the aspect of the number of decision splits. The problem is simplified to 8 cases and 

iterated through all the cases to find the decision scheme that optimizes the net profit in each case [6]. 

The histogram of the net profit under the 8 decision cases is shown in Figure 3, and the net profit 

of Decision 6 and Decision 8 is above 20, which is a higher level in the graph, to select a more optimal 

processing scheme. 

 

Figure 3. Histogram of net profit under different decisions 

4. Establishment of two-layer Optimization Model of Unit Net Profit and Discrete Snake 

Optimization 

4.1 Two-tier optimization model of unit net profit 

4.1.1 Construction of the lower layer planning model 

The lower-level planning model is related to the process of assembling spare parts into semi-

finished products. 

The quantity assembled into semi-finished product 1 is denoted as 𝑁1: 

 𝑁1 = max{𝛿1(1 − 𝑝1) + (1 − 𝛿1), 𝛿2(1 − 𝑝2) + (1 − 𝛿2), 𝛿3(1 − 𝑝3) + (1 − 𝛿3)} (11) 

Calculate the cost of each item, where the purchase cost is: 

 𝑊ℎ11 = 𝑐1 + 𝑐2 + 𝑐3 (12) 

Testing cost is: 

 𝑊ℎ12 = 𝛿1𝑡1 + 𝛿2𝑡2 + 𝛿3𝑡3 + 𝜔1𝑛1𝑡ℎ1 (13) 

Assembly cost is: 

 𝑊ℎ13 = 𝑛1𝑐ℎ1 (14) 

Disassembly cost is: 

 𝑊ℎ14 = 𝜂1(𝑁1 − 𝑁1
′)𝑦ℎ1 (15) 

The total cost 𝑊ℎ10 for Subplan 1 is: 

 𝑊ℎ10 = 𝑊ℎ11 +𝑊ℎ12 +𝑊ℎ13 +𝑊ℎ14 (16) 
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The optimization objective summaries are summed up to obtain the lower-level planning model for 

this unit net profit two-tier planning model as: 

 

min𝑊ℎ0 = min(𝑊ℎ10 +𝑊ℎ20 +𝑊ℎ30)

= min{(𝑐1 + 𝑐2 + 𝑐3) + (𝛿1𝑡1 + 𝛿2𝑡2 + 𝛿3𝑡3 +𝜔1𝑛1𝑡ℎ1) + 𝑛1𝑐ℎ1 + [𝜂1(𝑁1 − 𝑁1
′)𝑦ℎ1]

+(𝑐4 + 𝑐5 + 𝑐6) + (𝛿4𝑡4 + 𝛿5𝑡5 + 𝛿5𝑡5 + 𝜔2𝑛2𝑡ℎ2) + 𝑛2𝑐ℎ2 + [𝜂2(𝑁2 − 𝑁2
′)𝑦ℎ2]

  s.t. {

𝛿𝑖 ∈ {0,1}, 𝑖 = 1,2, … ,8

𝜔𝑗 ∈ {0,1}, 𝑗 = 1,2,3

𝜂𝑗 ∈ {0,1}, 𝑗 = 1,2,3

 (17) 

In this lower-level planning model, the optimization objectives of the three sub-programs are 

expressed separately and finally summed up to obtain the lower-level planning model with 𝛿𝑖 , 𝜔𝑗 , 𝜂𝑗 

as 0-1 decision variables and the optimization objective of minimizing the total cost of producing semi-

finished products. 

4.1.2 Construction of upper-level planning model 

The upper-level planning model takes the maximum net profit as the optimization objective and 

describes the impact of decisions on net profit through 0-1 decision variables. The steps are as follows: 

(1) Calculate the number of finished products 𝑁: 

 𝑁 = max{𝑁1
′, 𝑁2

′ , 𝑁3
′} (18) 

(2) The number of finished products put on the market is 𝑁0: 

 𝑁0 = 𝑓(𝑖, 𝑗, 𝑘, 𝜁) (19) 

(3) The number of unqualified finished products is 𝑁 − 𝑁0: 

 𝑁 − 𝑁0 = max{𝑁1
′, 𝑁2

′ , 𝑁3
′} − 𝑓(𝑖, 𝑗, 𝑘, 𝜁) (20) 

(4) Determine the number of defective products, the number of unqualified products returned by 

the user is recorded as 𝑔(𝑖, 𝑗, 𝑘, 𝜁), the total number of defective products is recorded as ℎ(𝑖, 𝑗, 𝑘), 
and then: 

 max{𝑁1
′, 𝑁2

′ , 𝑁3
′} − 𝑓(𝑖, 𝑗, 𝑘, 𝜁) + 𝑔(𝑖, 𝑗, 𝑘, 𝜁) = ℎ(𝑖, 𝑗, 𝑘) (21) 

(5) Calculate each cost and profit. According to the target net profit function of the upper-level 

planning model is net profit = total profit - (testing cost + assembly cost + return cost), expressing the 

net profit Profit’ as the target function, and then: 

  Profit' = 𝑊0 − (𝑊𝑐1 +𝑊𝑐2 +𝑊𝑐3 +𝑊𝑐4) (22) 

Based on this relation, the upper-level planning model is found to be: 

 

  max Profit = max[𝑊0 − (𝑊𝑐1 +𝑊𝑐2 +𝑊𝑐3 +𝑊𝑐4)]

                         = max{𝑓(𝑖, 𝑗, 𝑘, 𝜁)𝑤 − [𝜁max{𝑁1
′, 𝑁2

′ , 𝑁3
′}𝑡 + max{𝑁1

′, 𝑁2
′ , 𝑁3

′}𝑐

                             +𝛾ℎ(𝑖, 𝑗, 𝑘)𝑦 + (𝑚 + 𝑤)𝑔(𝑖, 𝑗, 𝑘, 𝜁)]} s.t. {
𝛾 ∈ {0,1},
𝜁 ∈ {0,1}

    (23) 

According to this equation, can then find out the relationship between the optimization objective of 

the upper planning model and the distribution law of the decision variables, and finally combine with 

the lower planning model to summarize the unit net profit two-tier planning model. 
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4.2 Discrete snake optimization algorithm to solve the model 

To solve the improved model, this study adopts the discrete snake optimization algorithm (Serpent 

Optimization Algorithm (SO)), which is inspired by the mating behavior of snakes and has the 

advantages of simple calculation and high efficiency [6]. 

In the snake optimization algorithm, the initialization process is denoted as: 

 𝑦𝑖 = 𝑙𝑏 + 𝑟 × (𝑢𝑏 − 𝑙𝑏)  (24) 

Where 𝑙𝑏 and 𝑢𝑏 are equal to 0 and 1, respectively; “𝑟” is a random number in [0,1]; and the 

population consists of males and females, assuming 50% males and 50% females. 

Individual coding is set to [𝑥1, 𝑥2, … , 𝑥17] and each value is a 0-1 variable. 

The negative value of total profit is taken as the fitness function to simplify the two-layer planning 

model and prioritize the upper layer objective function. Starting from the lower-level spare parts 

detection decision, gradually go to the upper level semi-finished and finished product decision, and 

then adjust the lower-level decision according to the upper-level fitness. When dealing with the 

quantity mismatch problem, follow the principle of under-compensation and add the expected cost of 

genuine goods. 

Combining the worst and best male and female individuals in the solution space search, 𝐸𝑞: 

 {
𝑦𝑖,𝑚(𝑔 + 1) = 𝑦𝑖,𝑚(𝑔) + 𝑟1 × (𝑦best ,𝑚 − 𝑦𝑖,𝑚(𝑔)) − 𝑟2 × (𝑦worst ,𝑚 − 𝑦𝑖,𝑚(𝑔))

𝑦𝑖,𝑓(𝑔 + 1) = 𝑦𝑖,𝑓(𝑔) + 𝑟1 × (𝑦best ,𝑓 − 𝑦𝑖,𝑓(𝑔)) − 𝑟2 × (𝑦worst ,𝑓 − 𝑦𝑖,𝑓(𝑔))
 (25) 

Where 𝑦best ,𝑚  and 𝑦worst ,𝑚  are the best and worst males in the population, and 𝑦best ,𝑓  and 

𝑦worst ,𝑓 are the best and worst females in the population, respectively; and 𝑟1 and 𝑟2 are random 

numbers in the interval (0,1), which can speed up convergence. 

Improve the quality of the solution by eliminating the low fitness decision group and introduce the 

mutation operation: 

 𝑂𝑖(𝑔 + 1) = {
𝑦best (𝑔) + sign(𝑟 − 0.5) × [𝑙𝑏 + 𝑟 × (𝑢𝑏 − 𝑙𝑏)] , if rand < 0.5

𝑦𝑖(𝑔) + sign(𝑟 − 0.5) × [𝑙𝑏 + 𝑟 × (𝑢𝑏 − 𝑙𝑏)] , else if 
 (26) 

 𝑦𝑖(𝑔 + 1) = {
𝑂𝑖(𝑔 + 1) , if 𝐹(𝑂𝑖(𝑔 + 1)) < 𝐹(𝑦𝑖(𝑔 + 1))

𝑙𝑏 + 𝑟 × (𝑢𝑏 − 𝑙𝑏) , else if 
 (27) 

Where 𝑖 = 1,2, … ,𝑁/2, 𝑂𝑖  is the new position randomly searched around the historical 

individuals. 

For the first 50% of individuals variant and greedy operation: 

 𝑀𝑦𝑖(𝑔) = 𝑦𝑝1(𝑔) + 𝐹 ⋅ (𝑦𝑝2(𝑔) − 𝑦𝑝3(𝑔)) (28) 

Where 𝑀𝑦𝑖(𝑔) is the individual of the population after the greedy operation; 𝑦𝑝𝑖(𝑖 = 1,2,3) is 

the individual within the original population. 𝐹 is the scale factor: 

 𝐹 =
1

2
(sin (2𝜋 × 𝑓𝑟𝑒𝑞 × 𝑔) × (𝑔 + 𝐺) + 1) (29) 

4.3 Analysis of results 

The net profit iteration curve as Figure 4: 
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Figure 4. Net profit iteration curve 

For the Figure 4, the objective function tends to converge at 24 iterations, when the maximum value 

of the fitness (i.e., net profit) is 62.78, i.e., the net profit of selling a finished product is 62.78%. 

The corresponding decision-making situation is that, for parts, all parts are not tested except for part 

2; for semi-finished products, all semi-finished products are tested, but not disassembled; for finished 

products, all costs are tested and disassembled at the same time. At this point, problem three is 

solved[7]. 

5. Conclusions 

This paper focuses on the decision-making problem in the production process, integrates the use of 

Bayesian method and discrete snake optimization algorithm, and constructs the optimization model of 

modal unit net profit and solves it in order to maximize the profit in production. 

Firstly, the sampling test based on Bayesian method can dynamically adjust the number of sampling 

tests by designing the prior distribution, updating the posterior distribution and setting the termination 

conditions, outputting the minimum number of tests and consistent with the trend of changes in the 

national standard, which reduces the cost of testing while ensuring the closeness to the reality and 

feasibility. 

Secondly, a two-layer optimization model of unit net profit is constructed, with the lower planning 

aiming at minimizing the total cost of producing semi-finished products, and the upper planning 

pursuing the maximum net profit, which comprehensively considers the cost and profit of each 

production link and provides a systematic framework for decision-making. 

Finally, the discrete snake optimization algorithm is used to solve the improved model, which can 

quickly approximate the optimal solution in the complex solution space through specific initialization, 

search, mutation and other operations. After the experiment, the algorithm tends to converge at 24 

iterations, obtains the maximum net profit of 62.78%, and gives a specific decision-making scheme, 

which provides a scientific basis for production decision-making. 
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