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Abstract: Recently, adversarial training (AT) has been demonstrated to be effective to 

improve deep neural network (DNN) robustness against adversarial examples. Among them, 

Misclassification Aware adveRsarial Training (MART) is the most promising one, which 

incorporates an explicit differentiation of misclassified examples as a regularizer. However, 

MART uses prediction error for identifying the misclassified examples, and yet it fails to 

achieve the greatest performance. This crux lies in the fact that the prediction error only 

focuses on the output probability regarding with the ground-truth label, neglecting the 

impact of the complement classes. In this paper, we offer a unique insight into the condition 

that emphasizes learning on misclassified examples, and propose an improved MART 

method with entropy-based uncertainty measure (termed as E-MART). Specifically, we 

consider the impact of the outputs from all classes and develop an entropy-based 

uncertainty measure (EUM) to provide reliable evidence that indicates the impact of the 

misclassified and correctly classified examples. Moreover, based on EUM, we conduct a 

soft decision scheme to optimize the loss function of AT, which help to make the efficient 

training for the model’s final robustness. We have carried out experiments on CIFAR-10 

dataset, and the experimental results demonstrate the effectiveness of our method. 

1. Introduction  

Although deep neural networks (DNNs) have shown impressive performance in numerous 

classification tasks, e.g., computer vision[1], speech recognition [2] and natural language processing 

[3, 4], they still suffer from some fatal threats such as the attack of adversarial example (AE)[5]. AE 

is carefully crafted by adding small adversarial perturbation to the natural instance [6, 7, 8, 9], 

leading to the false predictions by the target DNN model. Thus improving the model’s robustness 

against AEs has played an important role in the practical applications of DNNs. 

Over the past decade, a train of technologies have been proposed to improve the robustness of 

DNNs. The representative methods include adversarial training(AT)[10, 11, 12], input denoising 

[13, 14, 15], feature squeezing [16], adversarial detection [17, 18], defensive distillation [19, 20], 

gradient regularization [21, 22], among which AT has been shown to be the most effective. AT can 
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be regarded as a data augmentation technique that trains DNNs under AEs by solving a min-max 

optimization problem, where the inner maximum loop aims to derive the adversarial perturbation to 

fool the classifier while the outer minimization loop is used to train robust DNNs[12, 23]. Note that 

the AEs can be obtained by adding targeted or untargeted adversarial perturbations to the natural 

data in the inner maximization [15, 19, 24]. 

Compared with the conventional training method under the natural examples, AT is particularly 

difficult. To this end, many works are developed for the improvement of AT. For instance, to 

reduce the difference of the predictions between the natural examples and AEs, Zhang et.al. 

proposed TRADE [25] method, wherein robust error is decomposed into natural error and boundary 

error. Zhang et al. proposed a friendly adversarial training method (FAT) [26] method, where 

friendly adversarial data is used to minimize the loss for finding the misclassified adversarial data. 

These methods overlook a fact that the formal definition of an AE is conditioned on it being 

correctly classified and the AEs generated from misclassified examples are “undefined”. Hence, 

they treat all training examples equally in both the maximization and the minimization processes, 

regardless of whether or not they are correctly classified. In this regard, it is reasonable to pay much 

emphasis on the distinction of correctly classified and misclassified examples when adversarially 

training the robust DNNs. The pioneering work for this intuition is Max-Margin Adversarial (MMA) 

presented by Ding et.al. [27], they proposed to use maximum margin optimization for correctly 

classified examples while keeping the optimization for misclassified examples unchanged. Yet, 

MMA did not pay sufficient attention to misclassified examples and the improvements are limited. 

The most influential work of AT with misclassified examples is Misclassification Aware 

adveRsarial Training (MART) proposed by Wang et.al. [28]. Inspired by the observation that the 

misclassified examples have a significant impact on the final robustness, this method explicitly 

differentiates the misclassified and correctly classified examples during the training. That is, the 

AEs generated by the misclassified examples are regarded as more critical data and are shared with 

greater weight in AT. MART and its variant could significantly improve the state-of-the-art 

adversarial robustness. 

Despite its great success, MART is still fails to achieve the greatest performance in the practical 

application. It is due to the fact that MART only uses the prediction error regarding with the ground 

truth label to identify the misclassified and correctly classified examples, which neglects the 

impacts from the other classes. To address this issue, we give an exceptional perception regarding 

with learning on misclassified examples and proposed an improved misclassification aware 

adversarial training with entropy-based uncertainty measure termed as E- MART. E-MART uses 

entropy-based uncertainty measure (EUM) to evaluate the misclassified examples, and then applies 

a soft decision schema to weight the impacts of the misclassified and correctly classified examples 

during AT. Compared to MART, our method achieves a more reliable distinguishment between the 

misclassified and correctly classified examples and is able to further improve the model’s final 

robustness. 

2. Related Work 

Adversarial Attack Methods. Fast gradient sign method (FGSM) is a single-step white-box 

attack which is proposed by Goodfellow et.al. [11]. It generates the AE by adding a small 

perturbation in original example in the direction of the sign of the loss gradient. As an extension of 

FGSM, Kurakin et al. [29] proposed the Basic Iterative Method(BIM). This method lies in the fact 

that applying FGSM iteratively over the examples by using smaller step sizes would result in 

stronger AEs. At each iteration, the output is clipped to ensure that the AE lies within the ϵ-

neighborhood of the original input. A further improvement of BIM is MI-FGSM [30], which is 
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motivated by the conception of momentum gradient dependence. C&W attack [24] is an 

optimization-based attack method, which formultae an objective function to craft AEs to fool the 

models. Recently, the iterative Projected Gradient Descent (PGD) [11] has been empirically 

determined to be the most effective method for performing norm constrained attacks, which 

reasonably approximates the optimal attack. 

Robustness Boosting Method. The most effective approach to enhance the robustness of the 

DNN is AT [7]. AT modeling the training process by formulating a mini-max game between 

attacker and defender, where the goal of the attacker is to generate powerful AE in the inner 

maximization procedure, while the defender aims to minimize the impact of the AE in the outer 

minimization loop. More recently, a body of work has emerged that also improves robustness with 

adversarial training examples. Zhang et al. [25] suggested that the robust error can be decomposed 

into the sum of natural (classification) error and boundary error to describe the trade-off between 

accuracy and robustness of the classification problem and proposed a new defense method, 

TRADES, as optimizing a regularized surrogate loss. Ding et al.[27] studied the adversarial 

robustness of neural networks from the perspective of margin maximization (margin is defined as 

the distance from the input to the classifier’s decision boundary) and proposed Max-Margin 

Adversarial (MMA) training to directly maximize the margin to achieve adversarial robustness. 

Zhang et al. proposed a friendly adversarial training method (FAT) [26], which used friendly 

adversarial data to optimize the loss based on the misclassified adversarial data. Wang et al. [28] 

found that the misclassified examples have a significant impact on the final robustness and 

proposed a AT approach, MART, which explicitly differentiates the misclassified and correctly 

classified examples during the training. Carmon et al. [31] suggested using semi-supervised 

learning with unlabeled data to further improve robustness. Wong et al. [32] offered a way to train a 

robust model with a lower computational cost with weak adversaries. 

3. Preliminary 

For a K (K≥2) class classification problem, given a dataset of natural examples , 

, along with labels , let  be a DNN classifier with parameter  that 

is used to do classification on S.  is the predicted vector of  respect to class K, which 

detailed explanation as follows: 

                                 (1) 

where  is the predicted probability of xi belonging to class , which is a scalar. 

 contains K prediction probabilities, representing the prediction results of the model for K 

classes. Note that the sum of all scalars in [·] is 1. 

3.1. Adversarial  Training 

AT is a effective training method to improve the robustness and generalization ability of the 

model. AT includes making AEs and using them in the training process, so that the neural network 

model gradually adapts to this change and has certain robustness to the generated AEs. Specifically, 

the optimization objective of AT is: 

                          (2) 
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where  is the AE within the ϵ-ball(bounded by an Lp-norm) centered at natural example , 

 is the standard classification loss (e.g., the cross-entropy(CE) loss), n is the number of 

training examples. 

The internal maximization is used to generate the most powerful AEs, which is usually 

performed through an iterative gradient-based optimization, such as Projection gradient descent [11] 

(PGD), Fast Gradient Sign Method [7](FGSM). The external minimization is used to train the 

robust DNN model. 

3.2. Misclassification Aware adversarial Training 

Wang et al. claimed that the misclassified examples have a significant impact on the final 

robustness, so that the adversarial data generated by the misclassified examples should be regarded 

as more critical data. They divided the natural training examples into two subsets with respect to , 

i.e., correctly classified examples ( ) and misclassified examples ( ) : 

                         (3) 

Based on this intuition, they proposed a new AT approach, called Misclassification Aware 

adveRsarial Training (MART), incorporating an explicit differentiation of misclassified examples 

as a regularizer. The adversarial risk of MART is : 

   (4) 

where  is the indicator function,  and  are the adversarial risks for 

correctly classified examples and misclassified examples, respectively. In Equation 4, they 

combined two adversarial risks in an adversarial training framework, and show that the network can 

be trained by minimizing the risk . 

MART uses the indicator function  as a condition that emphasizes learning on 

misclassified examples. However, the condition cannot be directly optimized during the training 

process. Hence, they proposed to use the prediction error of of the ground truth label, i.e., 

 to replace , where  represents the predicted probability of 

the ground-truth class for the i-th example. This error will be large for misclassified examples and 

small for correctly classified examples. 

4. Methodology 

MART only uses the prediction error regarding with the ground truth label to identify the 

misclassified and correctly classified examples, neglecting the impacts from the other classes. To 

tackle this problem, we proposed an improved MART method termed as E-MART. In our method, 

we develops an entropy-based uncertainty measure (EUM) to provide reliable evidence for 

indicating the impact of the misclassified and correctly classified examples, and then apply a soft 

decision approach to evaluate the weight of the impact of the  misclassified examples. 
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Inspired by the concept of information entropy [33], we offer a unique insight into the case that 

distinguishes misclassified examples. We observe that the uncertainty of the prediction results can 

be used as a liable measure to indicate the learning effect of a model. That is, smaller uncertainty of 

a prediction implies  superior learning effect a model, and further contends the lower probability of 

an example to be misclassified; and vice versa. Since the prediction uncertainty can be expressed as 

the function of entropy, our proposed EUM can be represented as 

                                   (5) 

Since EUM considers all the components of the model output, rather than the prediction 

probability of the ground-truth class, It provides more reliable evidence to indicate the impact of the 

misclassified and correctly classified examples and fills the gap that complement classes have not 

been explicitly optimized in MART. Furthermore, Based on EUM, we propose an improved MART 

AT framework termed as E-MART. E-MART use EUM to evaluate the misclassified examples in 

the inner maximizing loop of AT. 

The adversarial risk of Equation 4 is give in the form of 0-1 loss. However, optimization over 0-

1 loss is intractable in practice. for our E-MART framework, we replace the 0-1 losses with proper 

surrogate loss functions which are both physical meaningful and computationally tractable. As 

shown in Equation 4, the loss required to be substituted is composed of three indicator functions: (1) 

, (2) , (3) . 

For the first indication function, instead of the commonly used CE loss in previous works[35, 36], 

we used a boosted cross entropy (BCE) loss as the surrogate loss as MART does. The BCE loss can 

be represented as 

                     (6) 

For the second indication function, drawing on MART, we used KL divergence as the surrogate 

loss function [35, 36] to measure the different output distributions between AEs and natural 

examples. Then, we have 

             (7) 

For the third indicator function, instead of using the prediction error of ground-truth in MART to 

identify the misclassified examples, we employ the proposed EUM to substitute this indicator 

function of 0-1 loss. 

Eventually,  the final objective function for the proposed E-MART can be representted as 

 (8) 

where  is a tunable scaling parameter that balances the supervised and unsupervised loss, and is 

fixed for all training examples. 

Note that the EUM in Equation 8 is served as a soft decision schema, which weights the impacts 

of the misclassified and correctly classified examples during AT. Specifically, larger/smaller EUM 

implies greater/smaller probability of an example to be misclassified. 
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5. Experiments 

In this section, we conducted experiments under various white box attacks on the  CIFAR-10 [37] 

dataset to evaluate our method. The architectures of the base classifiers are ResNet (ResNet-18) [1] 

and wide ResNet (WRN-34-10) [38]. 

5.1. Experimental Setup  

Training Parameters. For the sake of fair comparison, we adopt the  training parameters as 

MART used. That is, the classifiers are trained using SGD with momentum 0.9, weight decay 

3.5×10−3, batch size 128, and an initial learning rate of 0.01. For generating the adversarial 

examples, we use the PGD-10 attack method with random start and step size ϵ/4, the perturbation is 

subjected to L∞ constraint of ϵ = 8/255. For the trade-off of parameter λ, it is set to 6(for ResNet-18) 

/ 7 (for WRN-34-10). 

Baselines. The comparing method include standard AT(Standard) and its variants. 

 Standard[11]: standard adversarial training (PGD), which is the most effective method for 

performing norm constrained attacks. 

 MMA[27] : max-margin adversarial training, which proposed to use maximal margin 

optimization for correctly classified examples while keeping the optimization on misclassified 

examples unchanged. 

 Dynamic[34] : the adversarial training with a criterion that dynamically controls the 

convergence quality of the inner maximization. 

 TRADES[35] : the robust error can be decomposed into the sum of natural (classification) 

error and boundary error to describe the trade-off between accuracy and robustness of the 

classification problem. 

 MART[28] : misclassification aware adversarial training, which explicitly differentiates the 

misclassified and correctly classified examples during the training. 

Robustness Evaluation. We evaluated our methods and baselines using the standard test 

accuracy on natural data (Natural) and the adversarial robustness based on several attack methods, 

including the PGD method with 20 iterations [11], FGSM attack [7], CW attack [24]. All these 

methods have full access to the model parameters (i.e., white-box attacks) and are constrained by 

the same perturbation limit as above. 

5.2. Performance Evaluation 

In this section, to verify the effectiveness of our proposal, we compare our method with its 

competitors on WideResNet-34-10 and ResNet-18 under the CIFAR-10 dataset. Each method is 

executed six repeated trials with different random seeds, and the medians and standard deviations of 

the experimental results are recorded. We compare different methods on the best (the “best” refers 

to the highest robustness that ever achieved at different checkpoints.) checkpoint model (suggested 

by [39]) and the last checkpoint model (used by [11]), respectively. We evaluate the robust models 

based on the five evaluation metrics, i.e., standard test accuracy on natural data (Natural), robust 

test accuracy on adversarial data generated by FGSM [7], PGD-20 [11] and CW [24]. 

Table 1 shows the experimental results of the comparing methods on WideResNet-34-10. To 

clearly exhibit the variation tendency of the model robustness, we plot the robustness curves at each 

epoch in training for MART and our method in Figure 1. From Table 1, we can clearly observe that 

compared to MART, our method significantly enhances both the best checkpoint model and the last 

checkpoint model in terms of adversarial robustness, without declining the prediction accuracy of 

the natural examples. In addition, we can see from Figure 1 that the adversarial robustness of our 
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method is higher than that of MART under variant attack (e.g.,FGSM, CW, PGD-20) in the late 

training period (90-120 epoch), implying the proposed method is more stable than MART. 

Table 2 shows the adversarial robustness of the testing methods on ResNet-18. Figure 2 depicts 

the variation tendency of the model robustness obtained by our method and MART. From Table 2 

and Figure 2, we can observe that our method superior to the competitors in terms of the model best 

and last robustness in the absent of losing the prediction accuracy of natural instances. Meanwhile, 

the proposed method is more stable than MART. 

Table 1: White-box robustness (accuracy (%) on white-box test attacks) on CIFAR-10 dataset using 

the WRN-34-10. 

Defence Natural FGSM PGD20 CW∞ 

Best Last Best Last Best Last 

Standard 87.41 55.32 54.67 52.17 49.13 50.04 48.36 

Dynamic 82.01 62.14 62.16 55.10 51.36 50.22 49.31 

TRADES 83.11 62.81 62.67 56.01 52.61 51.19 50.23 

MART 83.97 63.08 62.15 58.85 56.81 54.51 54.45 

E-MART 83.87 65.84 64.05 59.95 57.93 56.74 56.15 

Table 2: White-box robustness (accuracy (%) on white-box test attacks) on CIFAR-10 dataset using 

the ResNet-18. 

Defence Natural FGSM PGD20 CW∞ 

Best Last Best Last Best Last 

Standard 83.38 60.01 59.76 47.31 45.81 45.33 44.99 

MMA 83.89 61.14 59.77 48.30 47.91 44.78 43.09 

Dynamic 82.12 60.83 58.77 48.44 46.56 46.08 44.31 

TRADES 81.97 61.01 59.31 50.77 50.21 48.31 46.93 

MART 82.83 61.85 60.00 55.61 54.17 51.49 50.93 

E-MART 82.81 61.70 61.94 57.60 56.53 53.51 52.84 

 
(a)         (b)       (c) 

Figure 1: Comparison of MART and E-MART on CIFAR-10 dataset using the WideResNet-34-10. 
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(a)         (b)       (c) 

Figure 2: Comparison of MART and E-MART on CIFAR-10 dataset using the ResNet-18 . 

5.3. Ablation  Experiment 

In this section, we investigate the effect of the super-parameter λ, which controls the strength of 

the regularization, for the objective function of E-MART defined in Equation 8 . 

Figure 3(a) shows the variation tendency of the model robustness obtained by our method under 

different λ ∈ [1, 8]. We run eight repeated experiments on the WRN-34-10 network with the same 

random seed and different λ values, and plotted the robustness curves in (a) of Figure 3. We can see 

that the different λ values make a significant difference in the robustness curves of the model, 

among which the red curve( λ=7 ) has favorable performance in the late training period. 

Figure 3(b) shows the robustness of the best checkpoint model and the last checkpoint under 

different λ ∈ [1, 8]. In order to select the best λ more clearly, we take " the robustness of the best 

checkpoint model and the last checkpoint model " as two criteria, and the results are shown in (b) of 

Figure 3. We can see that the model has favorable performance in terms of test robustness under 

λ=7. Eventually, we set λ to 7 (for WRN-34-10) as a the tradeoff parameter. 

For the ResNet-18 network, the tradeoff parameter is λ to 6 in our ablation experiment. 

 
(a)           (b) 

Figure 3: The ablation experiments of E-MART.  

6. Conclusion 

This paper mainly focus on improving the DNN robustness for AT depending upon misclassified 

examples. Instead of using the prediction error of the ground truth label to identify the misclassified 

and correctly classified examples as MART does, we develop an entropy-based uncertainty measure 
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to provide a more reliable evidence to indicate the impact of the misclassified and correctly 

classified examples. Moreover, we employ a soft decision scheme based on the entropy-based 

uncertainty measure to optimize the loss function of AT, which is contribute to making the efficient 

training for the model’s final robustness. Experimental results demonstrated that our proposal is 

superior to MART in terms of the model robustness and prediction accuracy. Our future work will 

pay more attention to the exploration of the correlations between the misclassified and correctly 

classified examples and study more capable approach to enhance the roustness of DNN model. 
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