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Abstract: This paper aims to study various technologies based on LIDAR, including 

distributed architecture, vision assisted wireless communication framework, multimodal 

machine learning framework, and self-calibrating illumination learning framework. The 

optimal algorithm will be selected and improved according to the specific situation of the 

actual dataset. The general plan is to first enhance low brightness images affected by 

weather and other environmental factors, and then use deep learning models to find the 

mapping relationship between visual image information and optimal codewords. In formal 

beam training, the accuracy of codeword prediction is improved to maximize the received 

power and improve the performance of vehicle networking communication. 

1. Introduction 

Millimeter wave communication technology plays a key role in improving driving safety and 

enhancing autonomous driving performance in vehicle networking communication systems. 

However, issues such as high-frequency signal attenuation and multipath effects require beam 

training, which involves directional transmission of beams to concentrate signal energy and 

maximize signal power. Therefore, it is particularly important to choose the best beam training 

scheme. The widely studied approach currently is codebook based beam training, which involves 

pre designing a set of beamforming vectors, where each vector corresponds to a specific direction of 

beam. The transmitting and receiving ends sequentially use the beams in the codebook for signal 

transmission. The receiving end measures the signal quality of each beam pair and provides 

feedback on the optimal index. Finally, the optimal combination of transmitting and receiving 

beams is selected based on the feedback. Compared to traditional beam training methods such as 

exhaustive scanning and layered scanning, codebook based beam training has the advantages of 

simple hardware implementation, strong compatibility, and widespread use in standardized 

protocols. However, the size of the codebook can affect training time, and in the case of a large 

number of antennas, it can also generate high time-frequency overhead. How to optimize the 

codebook structure and reduce the time-frequency overhead remains to be studied. 
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2. The trend of using artificial intelligence to improve telecommunications 

2.1 The significance of beam training in mobile telecommunications 

Beam training has emerged as a critical technology in modern communication systems, 

particularly in the context of millimeter-wave (mmWave) and terahertz (THz) frequencies. 

Millimeter wave and terahertz communications systems rely on the beamforming gains of the 

narrow beams to achieve sufficient receive signal power [1]. As the demand for higher data rates 

and more reliable connectivity grows, beam training plays a pivotal role in enabling efficient and 

robust wireless communication. One of the primary reasons beam training is essential is its ability 

to address the challenges of high-frequency signal propagation. LIDAR (light detection and ranging) 

is one of the most sophisticated sensors used in automated driving [2]. LIDAR data can be exploited 

without additional cost for improved communications when it is already used on an automated 

vehicle for mapping, positioning, or obstacle detection [3]. At mm Wave and THz frequencies, 

signals experience significant attenuation and are prone to obstacles, limiting their range and 

reliability. Beam training solves this problem by using directional antennas to focus signal energy in 

specific directions, thereby enhancing signal strength and extending coverage. As users move or 

obstacles alter signal paths, beam training continuously optimizes beam directions to maintain 

strong and stable connections. The increasing bandwidth and number of antennas do not come 

cheap. They bring with them a lot of control overhead that prevents them from realizing their full 

potential [4]. This adaptability ensures consistent performance, even in challenging scenarios such 

as mobile communication or indoor environments. Beam training also supports advanced 

technologies like massive Multiple-Input Multiple-Output (MIMO) and beamforming, which are 

integral to modern wireless systems. By precisely aligning beams between transmitters and 

receivers, it enhances the capacity and reliability of these systems, enabling them to support more 

users and deliver higher data rates. In conclusion, beam training is a cornerstone of modern 

communication, addressing the limitations of high-frequency signals, improving spectral efficiency, 

and enabling adaptive, high-performance networks. 

2.2 The particular advance and convenience of artificial intelligence 

Artificial Intelligence has become a transformative force in modern communication, 

revolutionizing how we connect, share information, and interact with technology. Its integration 

into communication systems has brought unprecedented efficiency, personalization, and innovation, 

making it a cornerstone of the digital age. One of the most significant contributions of AI in 

communication is its ability to optimize network performance. Through machine learning 

algorithms, AI can analyze vast amounts of data in real-time, predicting network congestion, 

identifying potential failures, and dynamically allocating resources. This ensures seamless 

connectivity, even in high-demand scenarios, such as crowded events or urban areas. For instance, 

AI-powered beamforming in 5G networks enhances signal strength and coverage, enabling faster 

and more reliable communication.AI also plays a pivotal role in personalizing user experiences. 

Virtual assistants like Siri, Alexa, and Google Assistant leverage natural language processing (NLP) 

to understand and respond to user queries, making interactions more intuitive and efficient.  As AI 

continues to evolve, its impact on communication will only grow, shaping the future of how we 

connect and interact in an increasingly digital world. Thus, artificial intelligence plays an 

importance role in beam training. Developing solutions for the mmWave beam training and channel 

estimation overhead has attracted considerable interest over the last decade [5]. 
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2.3 The current research status of image enhancement technology 

In recent years, deep learning has revolutionized low-light image enhancement. Convolutional 

Neural Networks (CNNs) and Generative Adversarial Networks (GANs) have become the 

cornerstone of modern techniques. These models are trained on large datasets of low-light and 

normal-light image pairs, enabling them to learn complex mappings between dark and bright 

images. For example, the EnlightenGAN and Zero-DCE (Zero-Reference Deep Curve Estimation) 

frameworks have demonstrated remarkable performance in enhancing low-light images while 

preserving natural colors and textures. Another promising direction is the integration of physical 

models with deep learning. By incorporating principles of image formation and light propagation, 

researchers have developed hybrid methods that combine the interpretability of traditional 

algorithms with the power of neural networks. These approaches often yield more robust and 

realistic results, particularly in challenging scenarios with extreme noise or uneven lighting. Despite 

these advancements, challenges remain. One major issue is the lack of high-quality datasets for 

training and evaluation. Many existing datasets are synthetic or lack diversity, limiting the 

generalization ability of models. Additionally, real-time performance is a critical requirement for 

applications like autonomous driving, where computational efficiency is paramount. Researchers 

are actively working on lightweight models and optimization techniques to address these concerns. 

2.4 The motivation of developing the design of beam training scheme 

The rapid development of vehicular communication systems, particularly in the context of the 

Internet of Vehicles (IoV), has created a pressing need for advanced technologies to ensure reliable, 

high-speed, and low-latency communication. Beam training has emerged as a key research area in 

this domain, driven by the unique challenges and requirements of modern vehicular networks. One 

of the primary motivations for studying beam training in vehicular communication systems is the 

increasing demand for high data rates and ultra-low latency. As vehicles become more connected 

and autonomous, they rely on real-time data exchange for applications such as collision avoidance, 

traffic management, and infotainment. Millimeter-wave and terahertz frequencies, which offer vast 

bandwidths, are essential to meet these demands. However, these high-frequency signals are highly 

susceptible to attenuation and blockages, making beam training crucial for maintaining strong and 

stable connections. Another critical factor driving research in beam training is the dynamic nature 

of vehicular environments. Vehicles move at high speeds, and their communication links are 

constantly affected by obstacles, reflections, and scattering. Traditional omnidirectional antennas 

are inefficient in such scenarios, as they waste energy and suffer from interference. Beam training 

enables directional communication by aligning narrow beams between vehicles and infrastructure, 

ensuring efficient signal transmission and reducing interference. Furthermore, the integration of 

massive Multiple-Input Multiple-Output and beamforming technologies in vehicular 

communication systems has highlighted the importance of beam training. These technologies rely 

on precise beam alignment to achieve high capacity and reliability. However, the fast-changing 

positions of vehicles and the need for real-time adaptation pose significant challenges. Research in 

beam training aims to develop algorithms and protocols that can quickly and accurately adjust beam 

directions, ensuring seamless communication even in highly mobile environments. Security and 

energy efficiency are additional motivations for advancing beam training in vehicular systems. By 

focusing signal energy only in the required direction, beam training reduces the risk of 

eavesdropping and minimizes power consumption, which is particularly important for battery-

operated devices and energy-efficient networks. 
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3. The general idea of the design of beam training scheme 

3.1 The design of low brightness image enhancement module 

Firstly, we need to gather a dataset containing pairs of low-light and corresponding normal-light 

images. Public datasets like LOL (Low-Light) or custom datasets can be used. Then we need to 

apply transformations such as rotation, flipping, and noise addition to increase dataset diversity and 

improve model robustness. We also need to normalize pixel values to a range of [0, 1] or [-1, 1] to 

facilitate model training and split the dataset into training, validation, and test sets. Choosing a deep 

learning model suitable for image enhancement tasks is important. Popular choices include 

Convolutional Neural Networks, Generative Adversarial Networks , or specialized architectures like 

EnlightenGAN or Zero-DCE. It is vital to define an appropriate loss function to guide the training 

process. Common choices include Mean Squared Error for pixel-wise accuracy, perceptual loss for 

visual quality, and adversarial loss for GAN-based models. We need to use a deep learning 

framework like TensorFlow or PyTorch to implement the model. These frameworks provide pre-

built layers and optimization tools that simplify development.  We construct the model architecture 

by defining layers such as convolutional layers, activation functions, and upsampling layers. For 

GANs, we define both a generator and a discriminator network. We choose an optimizer like Adam 

or SGD to update model weights during training. We set appropriate learning rates and other 

hyperparameters. We implement a training loop that iterates over the dataset, computes the loss, and 

updates the model weights. We use mini-batch training to manage memory usage and improve 

convergence. We periodically evaluate the model on the validation set to monitor performance and 

avoid overfitting. We adjust hyperparameters if necessary. We save model checkpoints at regular 

intervals to allow for recovery in case of interruptions and to facilitate later evaluation. We use 

metrics like Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and visual 

inspection to assess the quality of enhanced images. We evaluate the trained model on the test set to 

measure its generalization ability. We compare results with baseline methods to demonstrate 

improvements. We implement an inference script that loads the trained model and processes new 

low-light images to produce enhanced versions. Optionally, we create a user-friendly interface 

using libraries like Tkinter or Flask to allow users to upload images and view enhanced results. 

3.2 The design of multimodal fusion codeword prediction model 

Designing a multimodal fusion codeword prediction model for multimodal fusion codeword 

prediction involves integrating diverse data sources, such as text, images, and audio, to predict 

codewords or labels that represent complex information. This task is particularly relevant in 

applications like multimedia analysis, autonomous systems, and human-computer interaction, where 

combining multiple modalities can significantly enhance prediction accuracy and robustness. At the 

core of the program is a deep learning model capable of processing and fusing multimodal data. The 

architecture typically begins with separate input branches for each modality, each consisting of 

specialized neural networks tailored to the data type. For instance, Convolutional Neural Networks 

are used for image data, Recurrent Neural Networks or Transformers for text, and CNNs or 

specialized audio networks like Spectrogram-based models for audio. These branches extract high-

level features from their respective modalities, capturing the essential information needed for 

prediction. The fusion of these modalities is a critical step, often achieved through techniques like 

concatenation, attention mechanisms, or more sophisticated methods such as tensor fusion or cross-

modal transformers. Concatenation involves merging the feature vectors from each modality into a 

single vector, which is then fed into a fully connected network for final prediction. Attention 

mechanisms, on the other hand, dynamically weigh the importance of each modality based on the 
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context, allowing the model to focus on the most relevant features. Cross-modal transformers can 

further enhance fusion by enabling interactions between modalities at multiple layers, capturing 

complex dependencies. The training process involves feeding the multimodal data into the model 

and optimizing it using a suitable loss function, such as cross-entropy for classification tasks or 

mean squared error for regression. The model is trained on a dataset containing labeled examples of 

multimodal inputs and their corresponding codewords or labels. Data augmentation techniques, 

such as random cropping for images or time-stretching for audio, can be applied to increase dataset 

diversity and improve generalization. Evaluation is performed using metrics like accuracy, 

precision, recall, and F1-score, depending on the nature of the prediction task. The model's 

performance is validated on a separate test set to ensure it generalizes well to unseen data. 

Additionally, visualization techniques, such as attention maps or feature embeddings, can provide 

insights into how the model is leveraging each modality. Finally, the program is deployed with an 

inference pipeline that preprocesses input data, feeds it into the trained model, and outputs the 

predicted codewords. This pipeline can be integrated into larger systems or made accessible via a 

user interface, enabling real-time predictions in practical applications. 

3.3 The final combination of two models 

It creates a powerful pipeline that not only improves the quality of low-light images but also 

leverages enhanced images alongside other data modalities for accurate codeword prediction. This 

integrated approach is particularly useful in applications like autonomous driving, surveillance, and 

multimedia analysis, where both image quality and multimodal context are critical for decision-

making. The design begins with the low-light image enhancement module, which processes input 

images captured under poor lighting conditions. This module employs a deep learning model, such 

as a Convolutional Neural Network or a Generative Adversarial Network , trained to enhance low-

light images by increasing brightness, reducing noise, and preserving details. The enhanced images 

are then passed to the multimodal fusion module, where they are combined with other data 

modalities, such as text, audio, or sensor data, to form a comprehensive input for codeword 

prediction. The multimodal fusion module is designed to handle diverse data types, each processed 

by specialized neural networks. For instance, CNNs are used for image data, RNNs or Transformers 

for text, and Spectrogram-based models for audio. These networks extract high-level features from 

their respective modalities, which are then fused using techniques like concatenation, attention 

mechanisms, or cross-modal transformers. The fusion process ensures that the model can effectively 

integrate information from all modalities, capturing complex dependencies and enhancing 

prediction accuracy. The combined program is trained end-to-end, with the low-light image 

enhancement module and the multimodal fusion module optimized jointly. The training dataset 

consists of low-light images, their corresponding enhanced versions, and additional modalities, 

along with the target codewords or labels. A suitable loss function, such as cross-entropy for 

classification tasks or mean squared error for regression, is used to guide the training process. Data 

augmentation techniques, such as random cropping for images and time-stretching for audio, are 

applied to improve generalization. During inference, the program first enhances low-light images 

using the image enhancement module. The enhanced images, along with other modalities, are then 

fed into the multimodal fusion module to predict the codewords. The program outputs the predicted 

codewords, which can be used for decision-making in various applications. For example, in 

autonomous driving, the enhanced images and fused multimodal data can help the vehicle navigate 

safely in low-light conditions. 
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3.4 The performance evaluation of the design  

Evaluating the performance of a low-light image enhancement program and a multimodal fusion 

codeword prediction program requires a comprehensive set of metrics tailored to the specific tasks 

and objectives of each module. These metrics ensure that the programs not only meet technical 

benchmarks but also deliver practical value in real-world applications. For the low-light image 

enhancement program, the primary goal is to improve the visual quality of images captured under 

poor lighting conditions. Key metrics include Peak Signal-to-Noise Ratio (PSNR) and Structural 

Similarity Index (SSIM). PSNR measures the ratio between the maximum possible power of a 

signal and the power of corrupting noise, providing a quantitative assessment of image quality 

improvement. Higher PSNR values indicate better enhancement. SSIM, on the other hand, evaluates 

the perceptual quality by comparing luminance, contrast, and structure between the enhanced and 

reference images. An SSIM value close to 1 indicates high similarity to the reference image. 

Additionally, Mean Squared Error (MSE) can be used to measure pixel-wise differences, while 

visual inspection remains crucial for subjective quality assessment. In the case of the multimodal 

fusion codeword prediction program, the focus shifts to the accuracy and reliability of predicting 

codewords or labels based on integrated multimodal data. Common metrics include accuracy, 

precision, recall, and F1-score. Accuracy measures the proportion of correctly predicted codewords, 

while precision and recall evaluate the model's ability to identify relevant instances and avoid false 

positives and negatives, respectively. The F1-score, the harmonic mean of precision and recall, 

provides a balanced measure of the model's performance. For regression tasks, Mean Absolute 

Error (MAE) and Root Mean Squared Error (RMSE) are used to quantify prediction errors. 

Additionally, confusion matrices and Receiver Operating Characteristic (ROC) curves can provide 

deeper insights into classification performance. When combining these two programs, it is essential 

to evaluate both the enhancement quality and the prediction accuracy. For instance, in an 

autonomous driving scenario, the enhanced images should not only be visually superior but also 

contribute to accurate object detection and navigation decisions. Therefore, the combined 

evaluation might include metrics like detection accuracy, mean Average Precision (mAP) for object 

detection, and task-specific performance indicators such as navigation success rate. 

4. The summarization and prospect of the design 

4.1 Application in vehicle networking communication 

In the context of vehicular communication systems, the integration of low-light image 

enhancement and multimodal fusion codeword prediction programs offers a transformative 

approach to improving safety, efficiency, and user experience. These programs work in tandem to 

address the challenges posed by low-visibility conditions and the need for accurate, real-time 

decision-making based on diverse data sources. The process begins with the low-light image 

enhancement program, which is crucial for vehicles operating in environments with poor lighting, 

such as nighttime or tunnels. Cameras mounted on the vehicle capture low-light images, which are 

then processed by the enhancement module. Using deep learning models like CNNs or GANs, the 

program enhances these images by increasing brightness, reducing noise, and preserving critical 

details. The enhanced images provide clearer visual input for subsequent processing, enabling better 

detection of obstacles, road signs, and other vehicles. Once the images are enhanced, they are fed 

into the multimodal fusion codeword prediction program alongside other data modalities, such as 

LiDAR, radar, GPS, and vehicle-to-everything (V2X) communication signals. Each modality is 

processed by specialized neural networks—CNNs for images, RNNs or Transformers for text-based 

data, and spectrogram-based models for audio. The program then fuses these modalities using 
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techniques like concatenation, attention mechanisms, or cross-modal transformers, capturing 

complex dependencies and ensuring a comprehensive understanding of the environment. The fused 

data is used to predict codewords or labels that represent critical information, such as the presence 

of pedestrians, the state of traffic lights, or the identification of road hazards. These predictions are 

crucial for real-time decision-making in autonomous driving systems, enabling the vehicle to 

navigate safely and efficiently. For instance, if the system detects a pedestrian crossing the road in 

low-light conditions, it can immediately alert the driver or initiate an emergency stop. Throughout 

this process, the programs operate in a continuous feedback loop. The low-light image enhancement 

module ensures that visual data is always of high quality, even in challenging lighting conditions, 

while the multimodal fusion codeword prediction module leverages this enhanced data alongside 

other inputs to make accurate and reliable predictions. This synergy is particularly valuable in 

dynamic and unpredictable environments, where quick and precise responses are essential. 

4.2 Inspiration in developed beam training scheme 

The advancements in low-light image enhancement and multimodal fusion codeword prediction 

programs offer valuable insights and inspiration for improving beam training in modern 

communication systems, particularly in vehicular networks and 5G/6G applications. These 

programs demonstrate the importance of adaptive, data-driven approaches and the integration of 

diverse information sources, which can be directly applied to enhance the efficiency and 

effectiveness of beam training. One key inspiration is the use of deep learning to address 

challenging environmental conditions. Just as low-light image enhancement programs leverage 

CNNs and GANs to improve image quality in poor lighting, beam training can benefit from similar 

models to optimize beamforming in complex and dynamic environments. For instance, deep 

learning can be used to predict optimal beam directions based on real-time channel conditions, 

reducing the time and computational resources required for traditional beam training methods. This 

is particularly relevant in high-mobility scenarios, such as vehicular communication, where rapid 

beam alignment is critical. Another important insight is the value of multimodal data fusion. 

Multimodal fusion codeword prediction programs excel at integrating diverse data sources, such as 

images, text, and audio, to make accurate predictions. Similarly, beam training can incorporate 

multiple data modalities, such as channel state information (CSI), GPS data, and environmental 

sensors, to enhance beam alignment. By fusing these modalities, beam training systems can achieve 

more robust and context-aware beamforming, adapting to changes in the environment and user 

mobility. The concept of continuous adaptation and feedback loops in these programs also provides 

a blueprint for beam training. Low-light image enhancement and multimodal fusion programs 

operate in real-time, continuously refining their outputs based on new inputs. Beam training 

systems can adopt a similar approach, using real-time feedback from the communication channel to 

dynamically adjust beam directions and maintain optimal performance. This is especially useful in 

scenarios with high user mobility or rapidly changing environmental conditions. Furthermore, the 

emphasis on efficiency and resource optimization in these programs can inspire improvements in 

beam training. Low-light image enhancement programs focus on delivering high-quality results 

with minimal computational overhead, while multimodal fusion programs prioritize accurate 

predictions using efficient fusion techniques. Beam training systems can similarly benefit from 

lightweight, efficient algorithms that reduce training overhead and improve scalability, particularly 

in large-scale networks with many users and antennas. the innovations provide valuable lessons for 

advancing beam training in modern communication systems by adopting data-driven approaches, 

integrating diverse data sources, and emphasizing real-time adaptation and efficiency. 
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5. Conclusion  

This paper presents a design approach for an improved beam training scheme, which includes 

separately designing a low brightness image enhancement module and a codeword prediction 

module, and ultimately combining them to form a complete beam training technique. The 

performance evaluation indicators of this design have also been provided, which have significant 

application significance in vehicle networking communication systems and provide new inspiration 

for beam training. If the design is reasonably realized, it will help to improve the safety and stability 

of the auto drive system. 
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