


process.  

Crossover trial designs can be further classified into systematic and non-systematic crossover 

based on the differing strategies employed for crossover. Systematic crossover is guided by explicit 

rules for group switching, whereas non-systematic crossover relies on subjective judgments by the 

investigators. However, crossover trials still face significant challenges in clinical data analysis. 

Factors such as rapid disease progression, repeated measurement of outcome events, or prolonged 

study durations, prevalent in fields like oncology clinical trials and vaccine-induced protection 

studies, can complicate the accurate assessment of drug/vaccine efficacy due to the confounding 

effects of carryover and residual effects. To address these challenges, various statistical 

methodologies (including generalized linear models, mixed-effects models, Cox proportional 

hazards models with time-dependent covariates) have been proposed to reduce bias and accurately 

estimate treatment effects. Nevertheless, the selection of these methods is based on certain 

assumptions and can critically impact the final analysis of treatment efficacy. 

Therefore, there is a pressing need to delve deeper into the statistical methodology choices for 

crossover designs in both treatment and prevention domains, aiming to identify a universal 

approach that can accurately evaluate not only oncological interventions but also long-term vaccine 

efficacy. The choice of methodology influences both patient treatment plans and the 

implementation of public health policies, underscoring its paramount importance. 

2. Statistical Methodology Research 

2.1 Assessment Methods for the Efficacy of Treatment Drugs 

In the clinical trial domains of oncology treatment and medical device usage, researchers have 

developed specialized statistical methods tailored for analyzing crossover trial designs, addressing a 

diverse range of study endpoints including binary, ordinal, and continuous outcomes. For 

continuous endpoints that follow a normal distribution, Bellavance et al. proposed a modified F-test 

approximation method, which effectively addresses the issue of intra-subject correlation arising 

from repeated measurements. The adequacy of this method in controlling type I error was validated 

through simulation of a 3x3 crossover trial[2].Furthermore, since each subject receives multiple 

treatments and may exhibit sequence or carryover effects, models capable of handling these 

complex factors are necessary. Hulst et al.integrated the use of paired-sample t-tests, Mann-The 

analysis employed Mann-whitney U test and generalized linear mixed models to thoroughly 

evaluate the data for carryover and period effects.[3].Currently,general linear models and linear 

mixed models have garnered significant attention in the research field of treatment under crossover 

designs due to their simplicity in model construction, execution, and result interpretation, making 

them the predominant statistical methods. 

Wei Wang et al. evaluated the estimation performance of general language model (GLM) in 

estimating treatment effects, controlling type I error, and testing for treatment effects through 

simulation of a 2x2 repeated measures crossover trial comparing a novel test contact lens with a 

control lens[4].By comparing s sequence p period crossover clinical trial, assuming there are 

subjects within sequence groups in the crossover trial, let represent the response observed for the 𝑘 

subject in period j of sequence group i, where it follows a continuous and normal distribution. 

𝑦𝑖𝑗𝑘 = 𝜇 + 𝜋𝑗 + 𝜏𝑑[𝑖,𝑗] + 𝜆𝑑[𝑖,𝑗−1] + 𝜖𝑖𝑗𝑘 

Wherein,  μ represents the intercept, πjrepresents the period-related effect associated with the 

period j, τd[i,j]denotes the direct treatment effect related to the treatment applied in the period j of 

the sequence i, λd[i,j−1] represents the carryover effect from the previous period of the sequence i, 
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and ϵijk is the random error with zero mean and variance. 

In 3x3 crossover trials with a large number of sequences, GLM that incorporate carryover and 

period effects can offer significantly higher statistical power than single-factor ANOVA methods. 

This model assumes that differences in residual effects are proportional to treatment effects and is 

recommended for estimating treatment effects in 2x2 crossover designs only when residual effects 

are minimal. Furthermore, this model considers only 2x2 crossover trials involving first-order 

carryover effects, and results beyond the scope of these assumptions have not been further analyzed. 

To evaluate the accuracy and efficiency of this weighted average method in estimating treatment 

effects, a 2x2 crossover design was simulated[5]. To evaluate the accuracy and efficiency of this 

weighted average method in estimating treatment effects, a 2x2 crossover design was simulated. For 

patient i assigned to group g, let 𝑌𝑖𝑧
(𝑔)

 denote the subject's response in period z, which is represented 

by the following random effects linear mixed model, 

𝑌𝑖𝑧
(𝑔)

= 𝜇𝑖
(𝑔)

+ 𝜂𝐵𝐴𝑋𝑖𝑧
(𝑔)

+ 𝛾𝑍𝑖𝑧
(𝑔)

+ 𝜆𝐴𝐼{𝑔=1}𝑍𝑖𝑧
(𝑔)

+𝜆𝐵(1 − 𝐼{𝑔=1})𝑍𝑖𝑧
(𝑔)

+ 𝜀𝑖𝑧
(𝑔)

 

Where 𝜇𝑖
(𝑔)

 represents the random effect of i patient in group g, 𝑋𝑖𝑧
(𝑔)

 represents the covariate 

of the treatment group B, 𝑍𝑖𝑧
(𝑔)

=1 indicates that the i patient in group g receives treatment B in 

period z, otherwise it is 0; 𝐼{𝑔=1} is an indicator function of group A; 𝜀𝑖𝑧
(𝑔)

represents the random 

error. 𝜂𝐵𝐴 and 𝛾 represent the difference between treatment B and treatment A, as well as the 

difference between period 2 and period 1. Furthermore, 𝜆𝐴 and 𝜆𝐵 represent the residual effect 

caused by treatment A and B. 

However, the model has yet to consider the validity of its assumptions, particularly the 

assumption that the random effects linear mixed model has independently and identically 

distributed random errors, which can be difficult to uphold in real-world scenarios, potentially 

leading to errors in model estimation results. Secondly, the model only considers inter-treatment 

period effects and random effects, neglecting other potential factors that may influence the 

outcomes, such as individual differences and measurement errors. 

Moses Mwangi et al. proposed the use of a piecewise linear mixed-effects (PLME) model to 

evaluate drug effects. This model offers flexibility in handling drug responses across different 

phases of the period, making it suitable for capturing changes in response patterns over time.[6] 

𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝑡𝑗 + 𝛽2𝑃𝑗 + 𝛽3𝑇𝑖𝑗 + 𝛽4𝑃𝑗𝑡𝑗 + 𝛽5𝑇𝑖𝑗𝑡𝑗 + 𝛽6𝑃𝑗𝑇𝑖𝑗 + 𝛽7𝑃𝑗𝑇𝑖𝑗𝑡𝑗 + 𝑏0𝑖 + 𝑏1𝑖𝑡𝑗(1 − 𝑃𝑗)

+ 𝑏𝑖2𝑡𝑗𝑃𝑗 + 𝜖𝑖𝑗 

Among them, the time of the i participant was allocated to treatment A whenTij = 0,and if 

assigned to treatment B when Tij = 1. Pj represents thej period. β6and β7 represent fixed effects 

resulting from the interaction of periodic and periodic treatment. b0i is the random intercept of the 

i participant, b1i is the slope of the i participant before the random change in the first period Pj =

0, bi2 is the slope of the i participant after the random change in the second period Pj = 1, and ϵij 

is the random error measured by the i participant assigned to treatment T, during period Pj, and 

time period Tj . β0  is total intercept term. β1  and β2  represent the fixed effects of periodic 

treatment and periodic treatment interactions. 

This model further describes the impact of time, treatment, and period on the estimation of 

treatment effects. By setting𝑡4as the crossover time, it divides the treatment groups 𝑇𝑖𝑗 = 0into two 

stages, before and after the transition, allowing for separate calculations of subject responses within 

each stage. 
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Y𝑖𝑗 = 𝑡𝑗
∗ = {

𝛽0 + 𝛽1𝑡𝑗 + 𝑏10 + 𝑏𝑖1𝑡𝑗 + 𝜖𝑖𝑗 𝑡𝑗 ≤ 𝑡4

(𝛽0 − 𝑡4𝛽3) + (𝛽1 + 𝛽3)𝑡𝑗
∗ + 𝑏𝑖2𝑡𝑗

∗ + 𝜖𝑖𝑗 𝑡𝑗 > 𝑡4
 

The control group Tij = 1 are analyzed separately for the two stages before and after the 

crossover. 

𝑌𝑖𝑗 = {
(𝛽0 + 𝛽4) + (𝛽1 + 𝛽5)𝑡𝑗 + 𝑏0 + 𝑏𝑖1𝑡𝑗 + 𝜖𝑖𝑗                                        𝑡𝑗 ≤ 𝑡4                  

(𝛽0 + 𝛽4) − 𝑡4(𝛽3 + 𝛽7) + (𝛽1 + 𝛽3 + 𝛽5 + 𝛽7)𝑡𝑗
∗ + 𝑏2𝑡𝑗

∗ + 𝜖𝑖𝑗     𝑡𝑗 > 𝑡4.
 

The PLME model, characterized by its segmented linear structure, enables the independent 

modeling of linear variations in the response variable across diverse time periods. By incorporating 

random effects to account for individual heterogeneity, it significantly enhances the accuracy of 

estimation. This model exhibits flexible adaptability to various experimental designs, particularly 

excelling in the analysis of changes in treatment effects before and after transitions. Nevertheless, 

further research and optimization are indispensable for assessing its goodness of fit, predictive 

capabilities, and applicability in multi-period and multi-treatment group scenarios. In randomized 

crossover trials, PLME holds promise in estimating nonlinear trends in treatment effects while 

effectively controlling for residual errors. Nonetheless, future studies should focus on enhancing 

model optimization, validation procedures, and cross-design applications. 

2.2 Methods for Evaluating Vaccine Efficacy 

Methodological research in cross-over trials within the field of prevention primarily focuses on 

evaluating the effectiveness, safety, and interactions among various preventive measures, such as 

vaccination and public health interventions. Notably, during large-scale outbreaks, the assessment 

of vaccine protection efficacy is conducted by comparing the risk after vaccination in the placebo 

group with the risk at the start of the trial in the vaccinated group.[7,8]The Poisson 

distribution-based method for estimating vaccine efficacy (VE) is a commonly used statistical 

approach in the assessment of vaccine effectiveness, particularly in clinical trials designed with a 

fixed number of events. Since VE assessment often relies on the observed number of disease 

occurrences within a certain period, the Poisson distribution, which is suitable for describing the 

number of random events occurring within a fixed time or space, is particularly useful in VE 

evaluations.[9]Furthermore, due to the potential emergence of multiple novel strains or variants 

during large-scale outbreaks, the transmission speed of the virus accelerates, and vaccines 

developed based on the original virus strain may exhibit reduced efficacy against the new strains 

compared to the original strain. Dean Follmann et al. proposed that during the conduct of phase III 

clinical trials for COVID-19 vaccines, it is necessary to establish the initial efficacy of the vaccine 

against the original strain before crossover. By comparing the incidence of COVID-19 cases 

infected with the Delta variant in the originally vaccinated group after crossover, the VE can be 

estimated. Specifically, a higher incidence rate in the originally vaccinated group after crossover 

indicates a weakened VE.[10] 

When not considering strain variation, 

𝑉𝐸𝐾 = 1 −
𝜔1𝐾

𝜃𝐾
 

Where ωAK is the mean value of xAK (the number of cases in group A in period K) 

approximating Poisson distribution, and K=1 and 2 are the stages before and after group transfer. 

θK is the expected number of placebo cases in phase K. 

Before switching groups (in case of strain change, 
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𝑉𝐸1 = 1 −
𝑋11

𝑋01
 

After switching groups (in case of strain change), XAKindicates that the number of cases in 

group A followed Poisson distribution in period K, 

𝑉𝐸2 = 1 −
𝑋11

𝑋01

𝑋12

𝑋02
 

When strain variations are not considered, this approach can be extended to the modified Poisson 

method for estimating the overall vaccine efficacy, providing estimates of relative risk and vaccine 

efficacy for specific time periods. However, in the real world, it is crucial to pay attention to issues 

such as data integrity and accuracy, sample size considerations, testing of model assumptions, and 

comparison of multiple methods. To address these challenges, Dean Follmann further proposes a 

modified time-dependent Cox model that accommodates staggered enrollment and crossover, 

dropouts, covariate adjustments, changes in placebo event rates over calendar time, stratification by 

study centers, and smooth changes in strain-specific VE over time to enable more accurate VE 

estimation.[10,11]. 

When considering only the crossover design, 

ℎ𝑠(𝑡) = ℎ0(𝑡)exp [𝑍𝑖(𝑡) {𝛽0𝑠 + 𝛽1𝑠(𝑡 − 𝜏𝑖
(𝑣)

)}] 𝐼(𝜏𝑖
(𝑒)

> 𝑡) 

When considering changes in virus strains after crossover, 

ℎ𝑠(𝑡) = ℎ0(𝑡)𝑃(𝑡, 𝑠)exp [𝑍𝑖(𝑡) {𝛽0𝑠 + 𝛽1𝑠(𝑡 − 𝜏𝑖
(𝑣)

)}] 𝐼(𝜏𝑖
(𝑒)

> 𝑡) 

Where,t is the study start time, τi
(e)

τi
(v)

is the enrollment and vaccination time of subject i, 

h0(t) is the risk of infection of any strain and P(t, s)is the true proportion of strains in the 

surveillance cohort.Zi(t) is the indicator of whether subject i was vaccinated at the time. 

The time-dependent Cox model flexibly estimates vaccine efficacy as virus strains and trial 

designs evolve, taking into account factors such as seasonality, covariates, crossover populations, 

and crossover rates. However, this model primarily focuses on a unidirectional crossover pattern, 

where participants in the placebo group receive the trial vaccine after a delay. The model has not yet 

incorporated the impact of factors such as increased vaccine doses, spatial heterogeneity, 

heterogeneity in vaccine protection, and individual immune responses on VE estimation. In 

summary, a detailed examination of the statistical methodologies used in crossover designs in 

cancer treatment and prevention reveals that different methods are often employed to assess the 

efficacy of drugs or vaccines across various fields. Nonetheless, crossover designs share the 

common objective of evaluating therapeutic outcomes, whether in treatment or prevention. 

3. Convergence in Divergent Paths 

3.1 Differences in Crossover Designs Applied in Therapeutic and Preventive Domains 

For conditions with long treatment courses or chronic diseases, selective crossover designs are 

often adopted to adjust trial groups, but this can introduce confounding from the combined effects 

of the investigational drug and placebo. Additionally, due to the heterogeneity of tumor diseases 

and the diversity of treatment regimens, participants are typically individuals who are already ill or 

at high risk, and their physical condition and disease status may significantly impact trial outcomes. 

Therefore, when applying crossover designs, factors such as disease stage and underlying diseases 
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must be taken into consideration.[12]In clinical data analysis, the evaluation of drug efficacy often 

involves the use of complex statistical models such as the Cox proportional hazards model, 

generalized linear models, and mixed-effects models to handle survival data and time-dependent 

variables. These models necessitate consideration of factors like lag effects, inter-patient 

heterogeneity, and drug interactions. Evaluation metrics commonly include disease remission rates, 

cure rates, and survival rates[13]. Helgestad conducted a non-blinded, multi-phase, 

cluster-randomized crossover trial and employed logistic regression with cluster-robust standard 

errors to conduct a sensitivity analysis on the primary outcome, examining the promotional effect of 

breast cancer screening on cervical cancer screening[14]. Furthermore, as the treatment process for 

diseases is often lengthy, and long-term efficacy and safety of different treatment regimens need to 

be evaluated, the trial duration is typically prolonged, resulting in higher research costs, including 

drug costs, patient follow-up costs, data collection and analysis costs, among others. 

In contrast, vaccine trials often adopt a unidirectional crossover design, where participants are 

typically healthy individuals or those at low risk, with relatively good physical conditions that 

introduce less interference to trial outcomes. The implementation of vaccine trials is standardized 

and straightforward, not involving complex disease management.[15,16] 

The evaluation of long-term vaccine effectiveness focuses on assessing whether the vaccine can 

generate sufficient immune protection. Some scholars propose extensions to non-proportional 

hazards models and time-dependent risk models. Additionally, factors such as the long-term effects 

after vaccination, differences among different populations, and the synergistic effects of vaccines 

with other public health measures need to be considered. Evaluation metrics include immunological 

indicators like seroconversion rate and duration of antibody. Moreover, the effects of preventive 

measures designed with crossover designs (e.g., vaccination) can often be observed within a 

relatively short period, resulting in shorter trial durations and lower costs, with minimal impact 

from washout periods[17-21]. 

3.2 Similarities in Crossover Designs across Therapeutic and Preventive Domains 

Crossover designs exhibit distinctive flexibility and value in both therapeutic and preventive 

medical applications. Firstly, from an ethical and participant rights standpoint, these designs 

rigorously comply with ethical standards, ensuring the protection of participant rights, enhancing 

adherence to treatment or prevention protocols, thus reducing disease risk, improving public health, 

and offering additional options for clinical trial participants, which ultimately fosters greater patient 

engagement and satisfaction. Secondly, concerning the selection of statistical methods, although the 

therapeutic and preventive domains have distinct emphases, there is a notable degree of 

complementarity between the methodologies. Specifically, assessing the efficacy of drugs and 

vaccines requires careful consideration of treatment sequence effects and period effects on 

outcomes. The Inverse Probability of Censoring Weighting (IPCW) method enhances the 

robustness of statistical inferences by mitigating the impact of crossover behavior on statistical 

analysis through weighted adjustments, allowing researchers to more accurately estimate the effects 

of therapeutic or preventive interventions and reduce statistical errors due to missing data and 

confounding biases. 

However, crossover designs encounter challenges such as extended follow-up periods and 

difficulties in maintaining quality control, irrespective of their application in therapeutic or 

preventive contexts. To overcome these challenges, it is essential to enhance clinical trial 

management, optimize follow-up procedures, and continuously investigate and implement more 

advanced statistical methods to ensure the precision and reliability of trial outcomes. In conclusion, 

the utilization of crossover designs in the medical field not only enhances therapeutic and 
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preventive efficacy but also advances research methodologies and protects participant rights. This 

design approach represents a significant contribution to medical research. 

4. Conclusions 

The widespread application of crossover designs in the medical field is not only evident in their 

meticulous data comparison and analysis but also in their ability to explore therapeutic and 

preventive effects across multiple dimensions and factors, providing a solid empirical foundation 

for medical advancements. By implementing different intervention measures within the same 

population and comparing them at distinct time points or under varying conditions, crossover 

designs effectively mitigate biases arising from external factors such as individual differences and 

temporal variations. Consequently, the research outcomes are more reliable, accurately reflecting 

the true effects of interventions like drugs or vaccines. 

Although crossover designs exhibit differences in research design and objectives, design types 

and complexity, statistical method selection, subject selection, and trial costs between oncology 

treatment and prevention fields, they enhance research quality and efficiency in both therapeutic 

and preventive domains through various experimental designs (e.g., selective crossover design, 

cluster crossover design, one-way crossover design) and statistical approaches (e.g., generalized 

linear models, Cox regression models). Furthermore, they facilitate the development of personalized 

medicine, multidisciplinary collaboration, and medical innovation, ultimately improving medical 

outcomes and safeguarding public health. 

Overall, this methodology is well-suited for estimating the effectiveness of drugs and vaccines, 

offering flexibility in providing more personalized treatment regimens tailored to patients' varying 

conditions, ages, and physical constitutions. It also enables the formulation of more targeted 

preventive measures addressing risk factors and lifestyle habits across different populations. By 

conducting multiple measurements on the same patient, crossover designs reduce the need for large 

sample sizes, thereby lowering research costs. Therefore, crossover design clinical trial 

methodologies converge in their ultimate goals in both tumor treatment and disease prevention, with 

their research findings providing crucial evidence for the formulation of scientific and rational 

prevention and treatment strategies. This, in turn, effectively reduces the burden of disease and 

enhances public health. In the future, with the continuous integration of technologies such as big 

data and artificial intelligence, crossover designs are poised to exhibit even broader application 

prospects and profound influence in the fields of treatment and prevention. 
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