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Abstract: This research has developed an intelligent patient transfer device, designed to 

enhance the safety and efficiency of patient transfers within healthcare settings. The device 

integrates advanced multi-sensor fusion localization technology, including LiDAR, Inertial 

Measurement Unit (IMU), and ultrasonic sensors, along with the Kalman filtering 

algorithm to improve the precision of motion state estimation, tackling the complexities of 

state estimation in nonlinear systems. Experimental findings demonstrate that the device 

has achieved a positioning accuracy of ±1.0 centimeter, a 100% success rate in obstacle 

avoidance, and motion stability (in terms of acceleration changes) below 0.2 

meters/second². These results underscore the exceptional performance of the device in 

complex medical environments, effectively fulfilling the requirements for safe and efficient 

patient transfers. 

1. Introduction 

In the realm of healthcare, the safe and efficient transfer of patients is of paramount importance. 

Traditional medical transfer machines have limitations in terms of positioning and operation, which 

can potentially jeopardize patient safety during transfers. To address these concerns, this paper 

presents a design for a medical transfer machine that incorporates multi-sensor fusion localization 

technology, aiming to deliver more dependable and precise transfer services to patients.[1] 
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2. Mechanical Structure Design of the Medical Transfer Machine

2.1 Overall Structure Design

The overall structure of the medical transfer machine comprises a base, lifting device, extending 

arm, suspension system, and control system.[2] The base features a four-wheel drive structure to 

ensure agile movement across various terrains. The lifting device employs an electric screw rod for 

precise height adjustments, accommodating different bed heights and operational needs. The 

extending arm is equipped with telescopic and rotating capabilities to accurately position and secure 

the patient.[3] The suspension system utilizes high-strength ropes and hooks to guarantee patient 

safety and stability during the lifting process. As depicted in Figure 1. 

 

Figure 1: Comprehensive Lift Structure Design System for Lifts. 

2.2 Material Selection and Mechanical Analysis

To ensure the structural integrity and stability of the transfer machine, we have selected 

lightweight, high-strength aluminum alloy as the primary construction material. Finite element 

analysis (FEA) has been employed to conduct a thorough mechanical analysis of the key 

components, ensuring their safety and reliability when carrying patients.[4] Concurrently, the 

connection methods between various components have been optimized to enhance the overall 

structural reliability. As depicted in Figure 2. 

 

Figure 2: Multi-Module Synergistic Drive.  
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3. Sensor Selection and Configuration

3.1 LiDAR

The chosen high-precision 2D LiDAR is capable of rapidly scanning the surrounding 

environment at a rate of 1000 scans per second, providing detailed position and distance 

information of nearby obstacles. It boasts a measurement accuracy of ±0.5 cm and can deliver 

high-precision data within a range of 0.3 to 30 meters. [5] Figure 3 illustrates an example of LiDAR 

scan data, vividly depicting the obstacle distribution in the environment. 

 

Figure 3: Point Cloud Data Captured by 2D LiDAR. 

The visualization clearly illustrates the distribution of obstacles within the environment. The 

point cloud is depicted with varying densities and colors, indicative of the obstacles’ distances and 

locations. Objects closer to the LiDAR are represented by denser, more vibrant points. The scanning 

range, extending from 0.3 to 30 meters, underscores the LiDAR’s high precision in capturing 

environmental data. 

3.2 Inertial Measurement Unit (IMU)

The robust six-axis IMU is designed to measure the transfer machine’s acceleration and angular 

velocity in real-time. With a measurement range of ±2g for acceleration and ±300°/s for angular 

velocity, the IMU provides critical insights into the machine’s dynamic status, including speed, 

direction, and posture.[6] Figure 4 presents the real-time IMU data output, featuring the 

corresponding change curves for acceleration and angular velocity. 

(1) Acceleration measurement equation 

a(t)=ax(t)i+ay(t)j+az(t)k                           (1) 

Where, ax ( t ), ay ( t ), az ( t ) are the acceleration components along x, y, z axes respectively, 

and satisfy: 

−2g≤ax(t),ay(t),az(t)≤2g                           (2) 

(2) Angular velocity measurement formula: 
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ω(t)=ωx(t)i+ωy(t)j+ωz(t)k                        (3) 

where ωx ( t ), ωy ( t ), ωz ( t ) are the angular velocity components around the x, y and z axes 

respectively, and satisfy: 

−300∘/s≤ωx(t),ωy(t),ωz(t)≤300∘/s                       (4) 

 
Figure 4: Real-Time Data Output from the Six-Axis Configuration Inertial Measurement Unit.  

The graph includes the variation curves for acceleration and angular velocity. The blue curve 

depicts acceleration, fluctuating within the range of ±2g, while the red curve represents angular 

velocity, varying within ±300°/s. These data provide insights into the transfer machines’ dynamic 

status, encompassing speed, direction, and orientation. 

3.3 Ultrasonic Sensors

Eight ultrasonic sensors are strategically positioned around the transfer machine to measure the 

distance between the machine and the patient.[7] These sensors have a measurement range of 0.1 to 

5 meters, with an accuracy of ±0.1 cm and a rapid response time of less than 10 milliseconds. 

Figure 5 illustrates the arrangement and coverage of the ultrasonic sensors, ensuring comprehensive 

360-degree detection without any blind spots. 

Let di(t) denote the distance measured by the ith ultrasonic sensor at time t, N denotes the total 

number of ultrasonic sensors, here N=8, then: 

(1) Distance measurement equation: 

di(t)=USensori measure(t)                           (5) 

where USensori denotes the ith ultrasonic sensor, and measure(t) is the measurement function of 

this sensor at time t. 

(2) Distance range and accuracy constraints: 

0.1 m≤di(t)≤5 m                              (6) 

di(t)-true distance∣≤0.1 cm                         (7) 

where true distance is the actual distance, and the accuracy constraint indicates that the error 

between the measured value and the actual value is not greater than ±0.1 cm. 

(3) Response time constraint 
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Response time of USensori<10 ms                        (8) 

Indicates that the response time of ultrasonic sensor is less than 10 ms. 

 

Figure 5: Ultrasonic Transducer Array. 

4. Multi-Sensor Fusion Algorithm

4.1 Data Preprocessing

Data from the LiDAR, IMU, and ultrasonic sensors undergo preprocessing, which includes 

filtering, noise reduction, and data alignment.[8] The Kalman filter algorithm is employed to 

integrate IMU data, enhancing the precision of motion state estimation. Figure 6 presents a 

comparison of the IMU data before and after Kalman filtering, demonstrating the filtered data’s 

increased smoothness and stability. 

 

Figure 6: Comparative Analysis of IMU Data Pre- and Post-Kalman Filtering. 

4.2 Multi-Sensor Fusion Model

We have developed a multi-sensor fusion model utilizing the Extended Kalman Filter (EKF) 

algorithm to integrate data from LiDAR, IMU, and ultrasonic sensors. The EKF is particularly 
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adept at addressing state estimation challenges in nonlinear systems.[9] Figure 7 illustrates the EKF 

algorithm’s state estimation process, encompassing both the estimation and update stages. 

 

Figure 7: State Estimation Procedure Utilizing the Extended Kalman Filter (EKF) Algorithm. 

4.3 Localization Algorithm Optimization

The EKF algorithm is enhanced through the integration of the particle filter algorithm. This 

particle filter approach effectively approximates the system’s posterior probability distribution by 

means of random sampling, thereby adeptly addressing state estimation challenges in nonlinear and 

non-Gaussian systems.[10] In the context of multi-sensor fusion localization, the particle filter 

algorithm adeptly consolidates information from diverse sensors, thereby enhancing the overall 

performance of the localization system.[11] Figure 8 depicts the particle distribution as generated by 

the particle filter algorithm, with each particle representing a potential state. 

 

Figure 8: Particle Distribution in the Particle Filtering Algorithm. 
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4.4 Dynamic Model and State Estimation

We have developed a dynamic model for the transfer machine, taking into account its kinematic 

and dynamic properties. By leveraging the integrated sensor data and this dynamic model, the 

transfer machine’s state is estimated in real-time using state estimation algorithms. This estimation 

encompasses the machine’s position, speed, and posture. Table 1 presents the accuracy metrics for 

state estimation, detailing the estimation errors for both position and speed. 

Table 1: Accuracy Metrics for State Estimation Techniques。 

State Parameters Estimation Error 

Position (cm) ±1.0 

Speed (m/s) ±0.05 

5. System Implementation

5.1 Hardware System Design

The hardware framework of the medical transfer machine is meticulously constructed, 

integrating sensor modules, controller modules, drive modules, and power supply modules.[12] The 

sensor module is tasked with gathering critical environmental and machine data. A 

high-performance embedded processor within the controller module executes complex multi-sensor 

fusion algorithms and control logic. The drive module employs a precision-controlled brushless DC 

motor driver to govern the transfer machine’s movement, while the power supply module ensures a 

steady energy source for the entire system.[13]  

5.2 Software System Development

The control software for the transfer machine is developed on a robust real-time operating 

system, encompassing sensor driver programs, sophisticated data processing algorithms, advanced 

motion control algorithms, and an intuitive human-machine interaction interface.[14] The sensor 

driver program ensures the smooth operation and reliable data acquisition from the sensors. The 

data processing algorithm handles the initial preprocessing of sensor data and executes multi-sensor 

fusion. The motion control algorithm generates precise control commands using the fused position 

and posture data, orchestrating the transfer machine’s movements. The human-machine interaction 

interface offers a user-friendly operation panel, enabling medical staff to navigate the transfer 

machine with ease.[15] 

6. Performance Evaluation and Experimental Verification 

6.1 Experimental Setup

An experimental setting mirroring a clinical environment is established, complete with diverse 

obstacle arrangements, narrow corridors, ramps, and other challenges, to comprehensively assess 

the transfer machine’s performance. 
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6.2 Performance Metrics

Table 2: Performance Assessment: Specific Indicators and Target Achievement. 

Performance Indicator Expected Goal 

Positioning Accuracy (cm) ±1.0 

Obstacle Avoidance Success Rate (%) 100 

Motion Stability (Acceleration Change) ≤ 0.2m/s² 

Operational Convenience (Operation Time, s) ≤ 30 

A set of performance metrics is defined to quantitatively evaluate the transfer machine’s efficacy, 

including positioning accuracy, obstacle avoidance success rate, motion stability, and operational 

convenience.[16] Table 2 outlines the specific metrics and the targeted performance goals for each. 

6.3 Simulation Experiments and Result Analysis

An extensive series of simulation experiments are carried out within the experimental site, 

encompassing various patient transfer scenarios. 

Load Capacity Test: The medical transfer machine undergoes load capacity tests, where the load 

weight is incrementally increased to assess its performance.[17] The test findings confirm that the 

transfer machine effortlessly sustains the maximum designed load while maintaining excellent 

positioning accuracy and motion stability under loaded conditions.[18] The results from the load 

capacity, positioning accuracy, and motion stability tests are tabulated in Table 3. 

Table 3: Comparison of load capacity, positioning accuracy and motion stability test results。 

Load Weight (kg) 
Positioning Accuracy 

(cm) 
Motion Stability 

50 ±0.23 ≤ 0.07m/s² 

100 ±0.34 ≤ 0.13m/s² 

150 ±0.58 ≤ 0.22m/s² 

200 ±0.72 ≤ 0.41m/s² 

Data analysis was undertaken to assess the transfer machine’s performance across diverse 

conditions. The findings reveal that the machine has attained a high degree of positioning accuracy, 

facilitating precise patient transport to predetermined locations. In obstacle avoidance, the machine 

adeptly detects obstacles promptly and executes effective evasive maneuvers, culminating in a 

notably high success rate. It also demonstrates impressive motion stability, ensuring a comfortable 

transfer experience for patients. Regarding operational convenience, the machine is equipped with a 

user-friendly human-machine interface, allowing medical personnel to operate it with ease.[19] 

6.4 Practical Application Testing

To validate the effectiveness and practicality of the medical transfer machine in real-world 

scenarios, comprehensive application tests were conducted within authentic medical environments. 

[15] These tests aimed to simulate the actual conditions and challenges encountered during patient 

transfers in healthcare facilities. The machine was operated by medical staff in various departments, 

including wards, operating rooms, and rehabilitation centers.[20] 
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During the testing phase, detailed feedback was meticulously collected from both medical staff 

and patients who interacted with the machine. Medical staff provided insights into the machine’s 

operational ease, maneuverability, and its impact on their daily workflows.[21] Patients, on the other 

hand, shared their experiences regarding comfort, sense of security, and the overall quality of their 

transfer experience.[22] The data of practical application testing feedback is shown in Table 4. 

Table 4: Comprehensive Summary of Practical Application Testing Feedback. 

Aspect Medical Staff Feedback Patient Feedback 

Operational 

Ease 

The machine was intuitive and easy 

to operate, reducing the learning 

curve for staff. 

Patients felt the machine was 

smooth and caused minimal 

disturbance. 

Maneuverability 
It navigate… effectively in tight 

spaces and around obstacles. 

They experienced a stable 

and comfortable ride. 

Impact on Daily 

Workflow 

Streamlined patient transfers, saving 

time and reducing physical strain on 

staff. 

Patients appreciated the 

efficiency and reduced wait 

times. 

Comfort N/A 

The machine’s padding 

and design contributed to a 

comfortable experience. 

Sense of 

Security 
N/A 

Patients felt secure and stable 

during transfers. 

Overall 

Experience 

The machine enhanced the overall 

efficiency and safety of patient 

transfers. 

Patients reported a positive 

and less stressful transfer 

experience. 
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Figure 9: Comparative Evaluation of Medical Staff and Patient Feedback. 

The feedback gathered from these real-world application tests was invaluable in assessing the 

machine’s performance from a user’s perspective.[23] It helped in identifying any potential areas for 

improvement and ensuring that the machine met the specific needs and requirements of medical 

settings. The data collected during these tests further reinforced the machine’s capability to enhance 

patient care and streamline medical operations, thereby demonstrating its potential to be a valuable 

asset in healthcare environments.[24] (Figure 9) 

7. Conclusion

This study has successfully designed and realized a medical transfer machine leveraging 

multi-sensor fusion localization technology.[25] Through thoughtful mechanical structure design, 

judicious sensor selection and configuration, and the implementation of sophisticated multi-sensor 

fusion algorithms, the machine achieves accurate measurement of patient position and posture, 

significantly enhancing the safety and efficiency of patient transfers.[26] Experimental outcomes 

confirm that the transfer machine excels in terms of positioning accuracy, motion stability, and load 

capacity, satisfying the practical demands of the medical sector. Future research endeavors will 

focus on further refining the machine’s performance and augmenting its intelligence to deliver even 

higher quality services in healthcare settings.[27] 
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