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Abstract: In this paper, we have demonstrated that there are infinitely many pentagonal 

numbers which have two different ways to be decomposed as the product of two non-1 

pentagonal numbers, with the domain being in positive rational numbers. This was achieved 

by transforming an equation into an elliptic curve, identifying a rational point on this curve, 

and subsequently employing the Nagell-Lutz Theorem to establish the existence of infinitely 

many rational points on the elliptic curve. Finally, we conjecture that if the domain is 

restricted to positive integers, then there do not exist such two different decompositions. 

1. Introduction  

People have always been interested in certain special shaped numbers, such as Triangle numbers 
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Where  
.n 
 

In 1783, Euler [1] proved a theorem related to the partition of integers and pentagonal numbers: 
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where
 p n

represents the number of partitions of n . In 1831, Cauchy [2] proved that any positive 

integer can be represented as the sum of up to n  n -gonal numbers. Deyi Chen and Tianxin Cai [3] 
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proved that there are infinitely many triangular numbers which have two different ways to be 

decomposed as the product of two triangular numbers, each greater than 1. For example, 
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.
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A natural question is whether there is a similar result for pentagonal numbers. In this paper, we 

prove 

Theorem 1: There are infinitely many pentagonal numbers that can be decomposed into the 

product of two non-1 pentagons, with the domain being in positive integers  , i.e. there are 

infinitely many
( , , ) , 1, 1x y z y z      

 such that 

( ) ( ) ( ).P x P y P z                                                               (6) 

Are there infinitely many pentagonal numbers which have two different ways to be decomposed 

as the product of two non-1 pentagonal number? We performed some numerical calculations but did 

not find such examples. However, if we extend the domain ( , , )x y z     we found 

𝑃(35) = 𝑃(−13)𝑃(−2) = 𝑃(−4)𝑃(7),
𝑃(3267) = 𝑃(−18)𝑃(147) = 𝑃(15)𝑃(180),
𝑃(3780) = 𝑃(−135)𝑃(23) = 𝑃(12)𝑃(261),

𝑃(67947) = 𝑃(−16)𝑃(3432) = 𝑃(48)𝑃(1160),
𝑃(−3553) = 𝑃(−11)𝑃(260) = 𝑃(−4)𝑃(697),

 

𝑃(−765) = 𝑃(−68)𝑃(−9) = 𝑃(−45)𝑃(14), 

𝑃(−693) = 𝑃(−117)𝑃(5) = 𝑃(12)𝑃(48).                                           (7) 

Note that in the first equation (35) ( 13) ( 2) ( 4) (7),P P P P P      the number 13, 2, 4,7,    

satisfies 

3𝑎 − 1, 𝑏, 𝑎, −3𝑏 + 1                                                                            (8) 

where 4, 2.a b     Hence, we consider 

𝑃(𝑐) = 𝑃(3𝑎 − 1)𝑃(𝑏) = 𝑃(𝑎)𝑃(−3𝑏 + 1).                                                    (9) 

Noting that  

𝑃(3𝑎 − 1)𝑃(𝑏) − 𝑃(𝑎)𝑃(−3𝑏 + 1) =
(3𝑎−1)(3𝑏−1)(𝑎−2𝑏)

2
,                              (10) 

let 2a b , we have the identity 

𝑃(6𝑏 − 1)𝑃(𝑏) = 𝑃(2𝑏)𝑃(−3𝑏 + 1).                                                            (11) 

Therefore, we only need to consider 

( ) (2 ) ( 3 1).P c P b P b                                                                       (12) 

Noting that 
21 24 ( ) (6 1)P c c    , 

4 3 2 21 24 ( 3 1) (2 ) 1944 1404 324 24 1 (6 1) ,P b P b b b b b c                            (13) 
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so we consider the elliptic curve  

2 4 3 21944 1404 324 24 1y x x x x                                                    (14) 

where , 6 1x b y c   . By using rational points on the elliptic curve, we prove 

Theorem 2: There are infinitely many pentagonal numbers which have two different ways to be 

decomposed as the product of two non-1 pentagonal numbers, with the domain being in positive 

rational numbers  ,  i.e. there are infinitely many
5( , , , , )x y z u v 

 such that 

( ) ( ) ( ) ( ) ( ).P x P y P z P u P v                                                   (15) 

where , , , 1,{ ( ), ( )} { ( ), ( )}y z u v P y P z P u P v  . 

And we have the following 

Conjecture:  There is no pentagonal number which has two different ways to be decomposed as 

the product of two non-1 pentagonal numbers, with the domain being in positive integers  , i.e. 

there is no 
5( , , , , ) ,x y z u v 

 such that 

( ) ( ) ( ) ( ) ( ).P x P y P z P u P v                                                   (16) 

where , , , 1,{ , } { , }y z u v y z u v  . 

2. Preliminaries. 

Lemma 1 [4] If the quartic curve   

4 3 22 bx cx dx ey ax                                                          (17) 

has a rational point, it is birational equivalent to a cubic curve 

32

2 34 .Y X g X g  
                                                         (18) 

In particular,  

2 4 26 4y x cx dx e                                                           (19) 

is birational equivalent to (18), where 
2 2 3

2 3, .3g e c g ce d c     
 

Lemma 2 Elliptic curves  

 2 2 4 3 2
1( ) ( , ) | 1944 1404 324 24 1E x y y x x x x      

                     (20) 

and  

 2 2 3
2( ) ( , ) | 9072 291600E U V V U X    

                             (21) 

are birationally equivalent. 

Proof: In 1( )E
, divide both sides by 

4x ,  
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Let 
1 1 2

1
,

y
X Y

x x
 

, (22) changes to 

2 4 3 2

1 1 1 1 124 324 1404 1944.Y X X X X    
                                        (23) 

Let 1 2 1 26,X X Y Y  
, (23) changes to 

2 4 2

2 2 2 2108 756 1296Y X X X   
.                                           (24) 

By lemma 1, (24) birational equivalent to 

2 34 2268 18225.Y X X                                                    (25) 

(25) multiplied by 
24  on both sides, we have 

2 3(4 ) (4 ) 9072(4 ) 291600.Y X X                                           (26) 

Let 4 , 4V Y U X  , (26) changes to 2 ( )E
. 

Remark: 
2

81 2727
( ).,

4 8
E

 
 

   

Lemma 3 (Nagell–Lutz Theorem) [5] Let 

2 3 2   y x ax bx c                                                        (27) 

be a non-singular cubic curve with integer coefficients , ,a b c , and ( , )P x y  be a rational point of 

finite order. Then x  and y  are integers. 

3. Proofs of the theorems. 

Proof of Theorem 1. 

We prove that 

 
   (2)x P P yP 

                                                          (28) 

has infinitely many positive integer solutions. 

Noting 
21 24 ( ) (6 1)P x x   , 

(28) ⇔
(6𝑥−1)2−1

24
= 5

(6𝑦−1)2−1

24
⇔ (6𝑥 − 1)2 − 5(6𝑦 − 1)2 = −4.               (29) 

Let 6 1 ,6 1x X y Y    , (29) changes to  

2 25 4X Y   .                                                             (30) 

Some positive integer solutions of (30) are given by 

 5 1 5
n

n nX Y                                                         (31) 

where 9 4 5, 0.n     Noting 
2 18 1,    

2 1(1 5) 18(1 5) (1 5) ,n n n                                             (32) 
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i.e. 

2 2 1 15 18( 5) ( 5).n n n n n nX Y X Y X Y       
                                   (33) 

 The recursive sequences derived from (33) are 

{
𝑋𝑛+2 = 18𝑋𝑛+1 − 𝑋𝑛, 𝑋0 = 1, 𝑋1 = 29
𝑌𝑛+2 = 18𝑌𝑛+1 − 𝑌𝑛, 𝑌0 = 1, 𝑌1 = 13

                                            (34) 

But nX
 and nY

 modulo 6 form a periodic sequence, i.e. 

mod 6 1,5,5,1,1,5,5,1,
0,

mod 6 1,1,5,1,1,1,5,1,

n

n

X
n

Y




                                               (35) 

then 

5mod 6 4 2n nX Y n k    
                                                   (36) 

where +k
. 

Hence 

4 2 4 2
4 2 4 2

1 1
, .

6 6

k k
k k

X Y
x y 

   

 
   

                                       (37) 

and 

4 2 4 2( ) (2) ( )k kP x P P y 
                                                     (38) 

where +k
. We have completed the proof of Theorem 1 

Proof of Theorem 2. 

By lemma 3 and 
2

81 2727
( ),

4 8
E

 
 

  ,  it follows that 2 ( )E
has infinitely many rational points. 

By lemma 1, 1( )E
has infinitely many rational points ( , )x y . 

By introduction  

𝑃(𝑐) = 𝑃(6𝑏 − 1)𝑃(𝑏) = 𝑃(2𝑏)𝑃(−3𝑏 + 1) ⇔ 𝑦2 = 1944𝑥4 − 1404𝑥3 + 324𝑥2 − 24𝑥 + 1        (39) 

where , 6 1x b y c   . Hence  

𝑃(𝑐) = 𝑃(6𝑏 − 1)𝑃(𝑏) = 𝑃(2𝑏)𝑃(−3𝑏 + 1)                                        (40) 

has infinitely many rational solutions where

1
,

6

y
b x c


 

.   

According to the fact that   

{
𝑃(6𝑏 − 1) = 𝑃(2𝑏)
𝑃(𝑏) = 𝑃(−3𝑏 + 1)

⇔ 𝑏 =
1

4
 and  {

𝑃(6𝑏 − 1) = 𝑃(−3𝑏 + 1)
𝑃(𝑏) = 𝑃(2𝑏)

⇔ 𝑏 =
1

9
                                             (41) 

There are infinitely many b such that {𝑃(6𝑏 − 1), 𝑃(𝑏)} ≠ {𝑃(2𝑏), 𝑃(−3𝑏 + 1)} . Finally, since 

1
( )

3
P r P r

 
  

  , we can always obtain positive rational solutions.  We have completed the proof of 

Theorem 2. 
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