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Abstract: In order to optimize the effective utilization of road resources, reduce economic 

losses, and enhance the efficiency of traffic management, accurate prediction of road 

congestion is of paramount importance. This study focuses on the problem of traffic 

congestion prediction and thoroughly analyzes traffic congestion data from both temporal 

and spatial dimensions.  In the spatial dimension, violin plots are employed to analyze the 

spatial variations of traffic congestion, revealing significant differences in congestion levels 

among different road coordinates. Subsequently, this paper selects data from the 8 AM time 

frame and utilizes a scatter plot matrix to explore the correlations between traffic congestion 

values at different coordinate points.  In the temporal dimension, noticeable differences in 

traffic patterns between weekdays and non-working days are observed. Weekdays exhibit 

two distinct traffic peaks, whereas non-working days have a single, longer-lasting peak.  For 

the traffic congestion prediction, two algorithms, Lasso and Ridge regression, are employed, 

and the existing data is subjected to predictive analysis. To further enhance the performance 

of the models, this paper employs grid search to identify the optimal hyperparameters for 

the models.  The research findings demonstrate that both models yield highly accurate 

predictions, with minimal differences between them. Specifically, the Mean Squared Error 

(MSE) is 131.563, the Root Mean Squared Error (RMSE) is 11.470, and the Mean Absolute 

Error (MAE) is 8.044. These evaluation metrics validate the effectiveness and reliability of 

this research in the field of traffic congestion prediction, providing robust data support for 

future traffic management endeavours. 

1. Introduction 

Nowadays, the increasingly severe traffic congestion has a significant impact on people's work 

and daily lives. Improving transportation issues and accelerating urban modernization have become 

urgent tasks. Intelligent transportation systems have garnered significant attention as a crucial means 

of addressing transportation problems. Among them, the construction of traffic indicators and the 

description and prediction of traffic flow are of paramount importance. Accurate measurement and 

description of traffic indicators contribute to a deeper understanding of traffic conditions and provide 

a foundation for traffic management and planning. Meanwhile, traffic flow prediction helps anticipate 

future conditions and implement strategies to alleviate congestion and optimize traffic flow [1].  

Niukai et al. [2] proposed a traffic congestion level prediction model based on a backpropagation 

neural network. The study employed partial correlation analysis to identify the weight relationships 
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between different variables and subsequently established a neural network model to predict 

congestion levels. Tianyu et al. [3], on the other hand, used KNN-VA and KNN-RBF models as 

velocity prediction benchmarks and combined the two models through boosting fusion to obtain more 

accurate predictions.   

In this study, a comprehensive analysis of traffic congestion is conducted from both temporal and 

spatial perspectives. In the spatial dimension, the study examines the variations and correlations of 

traffic congestion values. In the temporal dimension, the periodicity of time and the differences 

between weekdays and non-working days are analyzed. Finally, the lasso and ridge regression 

algorithms are employed to predict traffic congestion. 

2. Algorithmic principle 

2.1 Ridge Regression 

Ridge Regression is a regression analysis method used to handle collinear data and analyze high-

dimensional data. Its main advantage is the ability to address multicollinearity issues, providing stable 

estimation results that are less susceptible to the influence of outliers. Additionally, Ridge Regression 

can handle high-dimensional datasets by introducing a regularization term to constrain the model's 

complexity, thus avoiding overfitting [4]. 

For Ordinary Least Square (OLS): 

 𝛽𝑂𝐿𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛{
1

2𝑛
(𝑦 − 𝑋𝛽)2}                                               (1) 

In Equation 1, y represents the target variable, X denotes the data matrix, β represents the model 

parameters, and n represents the sample size. 

OLS estimates the coefficients of the model by minimizing the squared error between actual values 

and predicted values. However, OLS does not incorporate regularization and is susceptible to 

overfitting. Additionally, when the number of variables exceeds the number of data points, it becomes 

impossible to solve the above equation.   

Ridge Regression is an improvement upon Ordinary Least Squares (OLS) by introducing an L2 

norm penalty term in the loss function. 

   𝛽𝑟𝑖𝑑𝑔𝑒 = 𝑎𝑟𝑔𝑚𝑖𝑛{
1

2𝑛
(𝑦 − 𝑋𝛽)2 +  𝜆 ∥ 𝛽 ∥ 2}                                     (2) 

In Equation 2, y represents the target variable, X denotes the data matrix, β represents the model 

parameters, and λ represents the L2 regularization parameter. 

2.2 Lasso Regression 

Lasso Regression utilizes L1 regularization to constrain the complexity of the model and has the 

ability to automatically perform feature selection during the fitting process. By shrinking the weights 

of features that have a lesser impact on predicting the target variable, Lasso automatically selects the 

most relevant features. Lasso can provide a sparse model, making it particularly suitable for datasets 

with a large number of features [5]. 

Lasso Regression incorporates an L1 norm penalty term into Ordinary Least Squares OLS 

𝛽𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛{
1

2𝑛
(𝑦 − 𝑋𝛽)2 +   𝜆 ∥ 𝛽 ∥ 1}                                     (3) 

In Equation 3, y represents the target variable, X denotes the data matrix, β represents the model 

parameters, and λ represents the L1 regularization parameter. 

Lasso achieves variable selection by compressing the coefficients of variables and setting some 
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regression coefficients to zero. The application scenarios of Lasso regression include datasets with a 

large number of features but only a few features that have a significant impact on the target variable, 

as well as cases where a more concise model with only relevant features is desired. Its advantages 

include automatic feature selection and generating sparse models. However, it has drawbacks such as 

instability in handling highly correlated features and potential difficulties in handling datasets with a 

large number of correlated features. When feature selection and obtaining a concise model are 

required, Lasso regression can be chosen. When dealing with multicollinearity and retaining all 

features, Ridge regression can be chosen. In practical applications, appropriate regularization 

parameters can be selected to optimize model performance using methods such as cross-validation. 

Additionally, for solving Lasso regression, the LARS (Least Angle Regression) algorithm can be 

used. The LARS algorithm determines the Lasso path, which is a series of Lasso solutions at different 

regularization parameters, by gradually adding variables. Its advantage lies in efficiently computing 

the entire path without requiring multiple iterations like traditional coordinate descent algorithms. 

3. Model Construction 

3.1 Source of Data 

The data for this study was obtained from 12-hour traffic flow measurements in Chicago for the 

months of April to September in a certain year. The traffic congestion at each monitoring point was 

measured every 20 minutes. The dataset includes the coordinates (x and y) of the monitoring points. 

Specifically, there are 3 possible values for x [0, 1, 2] and 4 possible values for y [0, 1, 2, 3, 4]. There 

are 8 road directions: EB (eastbound), NB (northbound), WB (westbound), SB (southbound), NW 

(northwest), SE (southeast), SW (southwest), and NE (northeast). Additionally, the dataset includes 

the congestion level. A portion of the data is presented in Table 1: 

Table 1: Traffic Congestion Dataset 

time x-coordinates y-coordinates direction congestion 

04-01 08:00:00 0 0 EB 70 

04-01 08:20:00 0 1 EB 18 

04-01 08:40:00 0 1 NB 60 

…… …… …… …… …… 

05-29 08:00:00 0 0 NB 43 

05-30 08:00:00 0 0 EB 42 

…… …… …… …… …… 

Based on the combination of x and y coordinates along with the direction, there are a total of 65 

drivable roads. 

To gain insights into the distribution pattern of the data, a statistical analysis was conducted on the 

congestion levels (ranging from 1 to 100) for the entire dataset, as illustrated in Figure 1. 

The histogram presented in Figure 1 showcases the distribution characteristics of the traffic 

congestion data and provides insights into its normality. The histogram exhibits a typical bell-shaped 

curve, indicating that the dataset adheres to the assumption of normal distribution. Moreover, the 

congestion levels of the traffic data consistently fall within the range of 0 to 100, and no outliers were 

observed. 
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Figure 1: Histogram of normality test for traffic congestion data 

3.2 Analysis of Spatial Variability in Traffic Congestion Levels 

Violin plots are a type of chart used to visualize data distributions. They provide a comprehensive 

view of the distribution characteristics and statistical summaries of multiple datasets. This type of 

plot combines features of box plots and density plots, offering enhanced insights into the data.  In this 

study, based on the data collected on April 10th, we generated violin plots for two roads with 

coordinates (x=0, y=0) and (x=2, y=2). These plots, depicted in Figure 2 and Figure 3 respectively, 

aimed to explore the impact of different road directions on congestion levels.  In Figure 2, for the 

coordinates (x=0, y=0), congestion levels for different directions are primarily concentrated between 

40 and 50. The distribution appears relatively concentrated and falls within the medium to lower 

range. On the other hand, Figure 3 represents the congestion levels for the coordinates (x=2, y=2), 

where the values are predominantly concentrated around 60. This distribution exhibits a more 

concentrated pattern and encompasses both high and low congestion values.  From both plots, it is 

evident that congestion levels vary across different directions. 

 

Figure 2: Distribution of road congestion values in different directions at x=0y=0 coordinates 

 

Figure 3: Distribution of road congestion values in different directions under x=2y=2 coordinates 
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3.3 Spatial correlation analysis of traffic congestion values 

To investigate spatial correlation, this study employed a scatterplot matrix to analyze the frequency 

of different congestion levels at different detection points at 8:00 AM on a specific day. In this matrix, 

the X-axis represents different traffic congestion values, while the Y-axis represents the frequency of 

corresponding traffic flow values. The matrix includes various coordinate positions (e.g., x=0y=0, 

x=0y=1, etc.). Based on the results depicted in Figure 4, most combinations of variables exhibit 

irregular patterns, with only a few combinations (e.g., x2y0 and x1y0) displaying a certain linear 

increasing relationship. In Figure 5, most combinations of variables demonstrate a significant linear 

increasing relationship. Additionally, most scatterplots exhibit similar increasing trends, meaning that 

when one coordinate combination shows a high frequency of congestion values, a similar increasing 

relationship is observed in another combination (e.g., x=1y=2, x=1y=3, and x=1y=3, x=1y=2). This 

indicates the presence of positive spatial correlation among congestion values in different spatial 

locations. Therefore, considering spatial factors is essential when constructing models. 

 

Figure 4: Scatterplot matrix with different coordinates (x=[1, 2], y=0) 

 

Figure 5: Scatterplot matrix with different coordinates (x=[1, 2, 3], y=[0, 3]) 
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3.4 Temporal Regularity Analysis of Traffic Congestion Values 

There is a noticeable difference in traffic congestion between weekdays and non-working days. 

On weekdays, traffic congestion primarily occurs during peak commuting hours, with two peaks, 

especially in the morning and evening. This is because people tend to leave early to arrive at work on 

time, resulting in concentrated traffic pressure within a short period. Additionally, weekday traffic 

trips are more purpose-driven, and drivers often aim to reach their destinations within specific time 

frames. This can lead to behaviors such as speeding, lane cutting, and lane changing, further 

exacerbating congestion. Therefore, congestion during weekdays tends to last longer, with a lower 

probability of dispersing. In contrast, non-working days exhibit a more evenly distributed pattern of 

traffic travel time, without distinct peak periods. Without the time constraints of work, people have 

more flexibility in their travel, resulting in relatively lower traffic pressure. Therefore, congestion 

levels on non-working days are usually lower than on weekdays, and congestion duration is relatively 

shorter. Furthermore, during weekdays, congestion tends to concentrate on main arterial roads within 

the urban road network, while on weekends and holidays, it is more likely to occur in commercial 

areas, parks, and public leisure and entertainment zones. Therefore, there are significant differences 

in traffic congestion between weekdays and non-working days, including congestion levels, duration, 

and occurrence areas. These differences are primarily influenced by factors such as travel times, travel 

purposes, and traffic pressure. The traffic congestion data from Monday to Sunday is plotted in Figure 

6, as shown below. 

 

Figure 6: Daily Trend of Traffic Congestion Levels on working and Non-working Days 

By observing the data presented in Figure 6, it becomes evident that there are two significant traffic 

peaks during weekdays (Monday to Friday). In the morning, from 8:00 to 9:00 AM, there is a sudden 

surge in road congestion as people leave for work or school. In the afternoon, from 4:00 to 6:00 PM, 

traffic volume increases again as it is the time for people to head home after work, forming the second 

peak. It is worth noting that the afternoon peak is generally more severe than the morning peak, which 

could be attributed to higher traffic volume and more complex road conditions during the evening 

rush hour.  In contrast, non-working days (Saturday and Sunday) exhibit a different pattern of traffic 

congestion. There are no distinct morning and evening peaks during these days. Instead, there is a 

relatively prolonged peak period starting from around 1:00 to 2:00 PM and lasting until the evening, 

around 7:00 to 8:00 PM, followed by a rapid decline in traffic congestion. This indicates that on non-

working days, people's travel times and purposes are relatively dispersed, and there is no concentrated 

peak travel period as observed on weekdays.  In summary, weekdays (Monday to Friday) show a 
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certain regularity in traffic congestion patterns, while Saturdays and Sundays display similar patterns. 

This regularity suggests a cyclical nature of traffic congestion over time, which is crucial for 

understanding and predicting traffic congestion patterns and formulating effective traffic 

management strategies. 

 

Figure 7: Comparison of Congestion Levels between Weekdays and Non-working Days 

According to Figure 7, there are noticeable differences in traffic congestion between non-working 

days and weekdays, not only in terms of regularity but also in congestion values. It is worth noting 

that during the morning peak period on non-working days, there is a slight decrease in congestion 

levels. This may be attributed to the fact that most people do not have the habit of going out early in 

the morning on non-working days. Furthermore, compared to the congestion values during the 

evening peak on weekdays, the congestion levels during the evening peak on non-working days are 

lower but generally more stable, encompassing multiple time periods. This could be due to the 

increased flexibility in people's travel times on non-working days, as they are not constrained by work 

schedules. Consequently, the distribution of traffic flow becomes more even, reducing the severity of 

congestion. These findings highlight the distinct characteristics of traffic congestion between non-

working days and weekdays. Understanding these differences is crucial for devising effective traffic 

management strategies tailored to each context. By leveraging the insights provided by Figure 7, 

policymakers and transportation authorities can implement measures to mitigate congestion during 

peak periods on weekdays and ensure smoother traffic conditions on non-working days. 

3.5 Modeling of Traffic Congestion Prediction 

3.5.1 Data segmentation 

Randomly selecting 80% of all samples as the training set and allocating the remaining 20% as the 

test set, the trained model is utilized to obtain predicted values for the test set data. 

3.5.2 Model hyperparameterization 

In the paper, experimental investigations were conducted using two prediction models, Lasso and 

Ridge, with the optimal hyperparameters of these models determined through grid search. The 

parameter configurations for the Lasso algorithm are presented in Table 2, while the parameter 

configurations for the Ridge algorithm are presented in Table 3. 
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Table 2: Lasso Hyperparameter Settings 

Parameter name parameter value 

alpha 0 

fit_intercept True 

positive False 

precompute False 

copy_X True 

max_iter 1000 

Table 3: Ridge Hyperparameter Settings 

Parameter name parameter value 

alpha 1 

fit_intercept True 

normalize False 

copy_X True 

max-iter None 

3.5.3 Model prediction results 

To simulate the models with the aforementioned hyperparameters and generate the predicted 

results using Python, the predictions for the Lasso and Ridge algorithms are presented in Figure 8, as 

shown in (a) and (b), respectively. 

 
(a) Lasso Prediction result        (b) Ridge Prediction Result 

Figure 8: Model prediction results 

The scatter plot in Figure 8, which depicts the relationship between the actual values and the 

predicted values, is utilized to evaluate the performance of the regression models. By observing this 

plot, one can intuitively assess the accuracy and bias of the model predictions. Upon examining the 

distribution of the scatter plot in Figure 8, it is apparent that the majority of the data points roughly 

follow a linear pattern. However, a few scattered points deviate significantly from the main cluster, 

representing outliers. This suggests that while the accuracy of both models' predictions is acceptable, 

there is still room for improvement. 
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3.5.4 Evaluation 

During the model evaluation phase, different evaluation metrics focus on different aspects of 

model performance. For example, Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) 

measure the squared differences between the predicted values and the actual values, while Mean 

Absolute Error (MAE) focuses on the absolute differences between the predicted values and the actual 

values. By considering multiple metrics, we can avoid the limitations of relying on a single metric 

and gain a more comprehensive understanding of the model's performance across different aspects.  

In this study, we calculated the MSE, MAE, and RMSE between the predicted values and the actual 

values, and used these three metrics to evaluate the models. The specific numerical values of the 

prediction errors for different models are presented in Table 4. 

Table 4: Comparison of Prediction Error Metrics 

Model RMSE MSE MAE 

Lasso 11.470 131.563 8.044 

Ridge 11.470 131.563 8.044 

3.5.5 Analysis of results 

The analysis of Table 1 and Fig. 8 shows that the two algorithms predict similar results. 

4. Conclusions  

In this paper, an analysis of traffic congestion data was conducted, focusing on both the spatial 

and temporal dimensions. Regarding the spatial dimension, violin plots were initially employed to 

explore the differences in traffic congestion across different spatial locations. The analysis revealed 

notable variations in congestion levels among these locations. Subsequently, a scatter plot matrix was 

constructed, depicting the positive correlation between congestion values in different spatial 

coordinates. These findings underscore the necessity of considering spatial factors when constructing 

models. Regarding the temporal dimension, distinct disparities in traffic congestion were observed 

between weekdays and non-working days. To predict and simulate the traffic congestion, two 

algorithms were employed in this study. The results indicate that the predictions yielded by both 

models were similar, with MSE, RMSE, and MAE values of 131.563, 11.470, and 8.044, respectively. 

Although the LASSO and Ridge algorithms, being a linear regression method, yielded acceptable 

prediction results, there is room for improvement. In the next step, nonlinear regression techniques, 

decision tree regression, and ensemble learning algorithms such as XGBoost regression will be 

employed to enhance the accuracy of traffic congestion prediction. By incorporating these advanced 

methodologies, it is anticipated that the predictive accuracy of the models will be further enhanced. 
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