
Stock Prediction System Based on Bi-directional LSTM 

Model  

Chenhao Wei*, Hong Rao 

Sun Yueqi Honors College, China University of Mining and Technology, Xuzhou, 221116, China 
*Corresponding author: 08230916@cumt.edu.cn 

Keywords: Chinese stock market, Stock prediction, Bidirectional Long Short-Term 

Memory network, Investment analysis, Deep learning 

Abstract: In the rapid development of China’s socialist market economy, stock investment 

has become a focal point of public attention, and the accuracy of stock market predictions 

is crucial for investors. This study employs a Bidirectional Long Short-Term Memory (Bi-

LSTM) network model to conduct an in-depth predictive analysis of a representative 

Chinese stock. The research initially selected stock data from 2010 to 2020, which 

underwent meticulous cleaning and normalization processes, and was prepared for model 

training through feature engineering and data segmentation. Subsequently, a Bi-LSTM 

model was constructed and trained, and its performance was evaluated using a validation 

set. Ultimately, the model’s predictive capability was comprehensively assessed through 

key indicators such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), 

Mean Absolute Error (MAE), and R-squared (R2). The study demonstrates the high 

application potential of the Bi-LSTM model in stock market prediction. 

1. Introduction 

In the era of big data, deep learning has become a key technology for solving complex problems 

and predicting future trends. This is especially true in the financial sector, where accurately 

forecasting the dynamics of the stock market is crucial for investors and analysts. Stock price 

prediction has always been one of the most challenging issues in financial engineering and 

quantitative analysis. It is influenced by a variety of unpredictable factors such as market sentiment, 

political events, and natural disasters. However, with the advancement of machine learning 

technology, particularly in time series prediction models, we now have more powerful tools for 

predicting stock prices. 

Past research has seen many scholars attempt to address this issue. For instance, Guan Jian 

analyzed methods based on RNN-CNN neural networks[1], while Li Junhao explored the possibility 

of using linear regression models for stock price prediction[2]. These studies have provided us with 

valuable knowledge and understanding, but they have also exposed the limitations of these traditional 

models in dealing with nonlinear and non-stationary time series data. 

This study aims to overcome these limitations by adopting Long Short-Term Memory networks 

(LSTM) to improve the accuracy of stock price predictions. LSTM models are widely used in time 

series prediction tasks due to their advantages in processing and remembering long-term 

Advances in Computer, Signals and Systems (2024) 
Clausius Scientific Press, Canada

DOI: 10.23977/acss.2024.080415 
ISSN 2371-8838 Vol. 8 Num. 4

105



dependencies. By analyzing the historical price data of a representative stock in the Chinese stock 

market, we have demonstrated the LSTM model’s ability to capture stock price fluctuation trends and 

verified the model’s predictive accuracy through a series of performance evaluation indicators. 

The stock price prediction method based on Bidirectional LSTM proposed in this paper is 

illustrated in Figure 1. 

 

Figure 1: Stock Price Prediction Method Based on Bi-LSTM 

2. Literature review 

Stock price prediction is a considerably complex issue within the financial domain, exerting 

significant influence on investment decisions and market analysis. Traditional forecasting methods 

such as linear regression models and CNN convolutional neural network models, while widely 

applied in practice, have limitations in dealing with the market’s non-linear characteristics and 

dynamic changes, particularly over long time series. 

In recent years, with the advancement of deep learning technology, researchers have begun to 

explore its potential in stock price prediction. Models capable of handling time series data, such as 

Recurrent Neural Networks (RNN), Long Short-Term Memory networks (LSTM), and Gated 

Recurrent Units (GRU), have demonstrated superior performance in predicting stock prices. 

For example, Sun Chenhao and Wang Lin used an LSTM model to predict the Shanghai Composite 

Index and compared it with the traditional ARIMA model, showing that the LSTM model performed 

better on long-term indicators[3]. Additionally, Peng Yan, Liu Yuhong, and Zhang Rongfen 

demonstrated the practical application value of the LSTM model in actual trading by constructing an 

LSTM-based trading strategy[4]. Qiao Zhongxue’s research on the Shenzhen Component Index with 

a Bidirectional LSTM model indicated that the Bidirectional LSTM model has better prediction 

capabilities for time series to a certain extent than the classic LSTM model[5]. 

In summary, the LSTM model has shown tremendous potential in stock price prediction, but to 

fully utilize this technology, further research and experimentation are needed. Future work can focus 

on model optimization, feature engineering, and the integration of other financial theories to improve 

the accuracy and reliability of predictions. 

3. Data Preprocessing 

3.1 Data Overview 

The data used in this article is derived from a publicly available dataset of a representative stock 

from the Chinese market. This dataset encompasses a total of 2026 entries spanning a decade from 

106



2010 to 2020, which includes data features as shown in Table 1.  

Table 1: Stock Data Feature Table 

Data Feature Meaning 

Opening Price opening price of the day 

Closing Price closing price of the day 

Highest Price highest price of the day 

Lowest Price lowest price of the day 

Trading Volume number of shares traded 

3.2 Data Preprocessing Operations 

Initially, the raw dataset underwent data cleaning, missing value imputation, and outlier removal. 

𝑥fill =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1                                (1) 

The next step involves normalizing the data, scaling the features to a range of [0, 1].  

𝑥norm =
𝑥−𝑥min

𝑥max−𝑥min
                              (2) 

Then, the opening prices for the first 2126 days are designated as the training set, and the opening 

prices for the subsequent 300 days as the test set. Finally, the training and test sets are formatted to 

suit time series prediction, conforming to the expected input shape for the LSTM model. 

4. Model Establishment 

4.1 Model Introduction 

LSTM is an enhanced type of Recurrent Neural Network (RNN) designed to address the vanishing 

gradient problem and capture long-term dependencies. Unlike standard RNNs, LSTMs incorporate 

memory cells and gate mechanisms, which help in selectively retaining or forgetting information, 

making them suitable for time series data modeling. 

4.2 Establishment of the Bi-LSTM Model 

 This study implements a Bidirectional LSTM model using the TensorFlow framework to explore 

the deep features of sequence data. The model structure includes LSTM layers in two directions, 

capable of capturing the dependencies of time series both forward and backward. With the proper 

configuration of optimizers and loss functions, the model demonstrates good predictive performance 

after multiple rounds of iterative training. 

As illustrated in Figure 2, in the Bi-LSTM, two LSTM layers are arranged in parallel, one 

processing the forward time steps and the other the backward time steps. These two parallel LSTM 

unit flows receive input at each time point, and their outputs are merged to form a complete 

understanding of the current time point. This bidirectional flow allows the network to capture more 

complex patterns, thereby learning the context information of both past and future simultaneously. 

107



 

Figure 2: Bi-LSTM Architecture Diagram 

Here’s a pseudocode representation of the algorithm for constructing the Bi-LSTM model: 

Step 1. model = Sequential()           # Define the model structure 

Step 2. model.add(Bidirectional(LSTM(units=64, return_sequences=True), input_shape=(time 

step, Number of features)))     # Add a bidirectional LSTM layer, set the number of cells and the 

input shape 

Step 3. model.add(Dense(Output dimensions)) # Add an output layer and set the output dimensions 

Step 4.model.compile(optimizer='adam', loss='Loss function', metrics=['Evaluate metrics'])                              

# Compile the model 

Step 5.model.fit(Training data, Training labels, epochs= The number of iterations, batch_size= 

Batch size)                                # Train the model 

Step 6.model.evaluate(Test data, Test labels) # Evaluate model performance 

Step 7.predictions = model.predict(New input data) # Make predictions 

4.2.1 Model Architecture 

 Similar to the conventional LSTM, the hierarchical structure of the Bi-LSTM encompasses an 

input layer, forget gate, input gate, cell state, output gate, and hidden layer. These layers collaborate 

to enable the Bi-LSTM to effectively process time-series data. 

(1) Input Layer: Receives the input of time-series data and conveys this information to the 

subsequent layer. 

(2) Forget Gate: Determines which information to discard from the cell state. This is computed 

through a sigmoid layer that outputs values between 0 and 1, indicating the extent to which 

information is retained or discarded. 

(3) Input Gate: Decides on the new information to be stored in the cell state. The sigmoid layer 

determines which values to update, followed by a tanh layer that creates a new candidate values vector. 

108



(4) Cell State: Maintains short-term and long-term memories, updated based on the decisions of 

the forget gate and input gate. 

(5) Output Gate: Determines which part of the cell state to output. The sigmoid layer ascertains 

which portion of the cell state will be outputted. 

(6) Hidden State: Represents the current output at any given moment, calculated based on the cell 

state and decisions of the output gate. 

4.2.2 Parameter Configuration 

(1) Timestamp Length: Defined as the sequence length within the data segmentation function, set 

to 40. 

(2) Number of Epochs: The iteration count for model training, set to 20. 

(3) Optimizer: The Adam optimizer is employed during model compilation, with a learning rate 

set at 0.01. 

(4) Loss Function: Mean Squared Error function is utilized as the loss function during model 

compilation. 

(5) Batch Size: During model training, the batch size is set to 64. 

(6) Validation Frequency: Set to 1, indicating validation occurs after every epoch. 

(7) Number of LSTM Units: Configured to 50 units. 

(8) Activation Function: Set to the ‘relu’ function. 

4.2.3 Training Process 

The opening prices for the first 2126 days are used as the training set, with the subsequent 300 

days’ opening prices serving as the test set. During each epoch, the model undergoes forward and 

backward propagation based on the training data to update weights. A validation set is established to 

monitor model performance and prevent overfitting. 

5. Model Resolution 

5.1 Selection of Evaluation Metrics 

(1) Mean Squared Error (MSE): MSE is the average of the squares of the differences between 

predicted and actual values, suitable for continuous numerical prediction problems. It is defined 

mathematically as: 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛

𝑖=1
                         (3) 

(2) Root Mean Squared Error (RMSE): RMSE is the square root of MSE, measuring the prediction 

error in the same units as the original data and is sensitive to outliers. It is mathematically expressed 

as: 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸                              (4) 

(3) Mean Absolute Error (MAE): MAE represents the average of the absolute differences between 

the predicted and actual values. It is less sensitive to outliers and offers a more intuitive measure of 

prediction accuracy. The formula for MAE is given by: 

𝑀𝐴𝐸 =
1

𝑛
∑ ∣ 𝑦𝑖 − �̂�𝑖 ∣
𝑛
𝑖=1                          (5) 

(4) Coefficient of Determination (R2): The R2 metric quantifies the extent to which a model 

accounts for the variability in the data, ranging between 0 and 1. Values closer to 1 indicate a better 

109



fit of the model to the data. It is defined as: 

𝑅2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)

2𝑛

𝑖=1

∑ (𝑦𝑖−�̄�)
2𝑛

𝑖=1

                            (6) 

5.2 Analysis of Model Resolution 

The number of hidden units determines the complexity of the LSTM layer. Fifty hidden units can 

enhance the model’s fitting capability while also ensuring that overfitting is avoided. 

The number of iterations dictates the rounds of model training. Too few iterations may lead to 

underfitting, while too many may cause overfitting. After multiple experiments and employing early 

stopping, it was determined that twenty training epochs are optimal. 

The learning rate controls the magnitude of model parameter updates during each iteration; a 

learning rate that is too high may result in unstable training, whereas one that is too low can slow 

down the model’s convergence. Figure 3 illustrates the learning loss of the model under the learning 

rate of 0.1 used in this study. 

 

Figure 3: Training and Validation Loss Graph 

As depicted in Figure 3, the training loss (represented by the orange line) starts from a higher value 

and rapidly decreases with the increase in epochs, then gradually stabilizes. This indicates that the 

model is progressively adapting to the training data. 

The validation loss (represented by the blue line) also starts from a higher value and decreases as 

the epochs progress, but the decline is less pronounced, with slight fluctuations in the later stages. 

This may suggest that the model has good generalization capabilities on the validation dataset, but 

there might also be a slight overfitting. 

The x-axis represents the epoch, ranging from 0 to 17.5. The y-axis represents the loss value, 

ranging from 0 to 0.020. 

Both lines exhibit higher loss values at the initial stage, but as training progresses, the loss values 

decrease. The rapid decline and subsequent stabilization of the training loss indicate effective model 

110



training. 

5.3 Conclusions of the Experimental Section 

 

Figure 4: Predicted Price Trend Graph 

As depicted in Figure 4, the predictive model is adept at capturing the overall trend of stock prices. 

Nonetheless, there are instances where notable discrepancies between the predicted and actual values 

are observed. Such differences may stem from the model’s inability to fully capture all the factors 

that influence stock price fluctuations or due to the stochastic volatility of the stock market. 

The experiment yielded the following results: 

Table 2: Model Evaluation Metrics Table 

MSE 710.1336 

RMSE 26.6483 

MAE 21.6668 

R2 0.9328 

5.4 Conclusions of the Experimental Section 

As indicated in Table 2, the values of MSE and RMSE are relatively high, suggesting that the 

model may have significant errors in certain predictions. However, the R^2 value is close to 1, 

indicating that the model fits the data well overall. This may mean that the model can make accurate 

predictions in most cases, but there might be substantial prediction errors in extreme cases or with 

outliers. 

6. Conclusion 

In the stock securities trading market, knowing the general trend and price of stocks in the near 

term can provide investors with considerable reference. This paper, after preprocessing operations 

such as data cleaning and normalization on typical stock data from the Chinese market, selected a Bi-

111



directional LSTM model and explored suitable numbers of units, iterations, and learning rates through 

comparative experiments. The study successfully captured the short-term trend of the stock, highly 

consistent with the actual price trend. However, there are still prediction deviations at some critical 

points. 

Future considerations include further improvements and optimizations in feature engineering, 

hyperparameter optimization, and interpretability: improving feature extraction methods to integrate 

more domain knowledge into the model; using automated tools or Bayesian optimization to select the 

best combination of hyperparameters; and researching how to enhance the interpretability of the 

LSTM model to make it easier to understand and apply. 

References  

[1] Guan Jian. Research on Stock Price Prediction Method Based on RNN-CNN Model[D]. Nanjing University of 

Information Science & Technology, 2023. 

[2] Li Junhao. Stock Price Prediction Model Based on Improved Multiple Linear Regression[J]. Science Technology and 

Economy Market, 2019, (08): 61-62+64. 

[3] Sun Chenhao, Wang Lin. Prediction and Analysis of Shanghai Composite Index Based on ARIMA and LSTM[J]. 

Information and Computer (Theoretical Edition), 2023, 35(02):29-31. 

[4] Peng Yan, Liu Yuhong, Zhang Rongfen. Modeling and Analysis of Stock Price Prediction Based on LSTM[J]. 

Computer Engineering and Applications, 2019, 55(11):209-212. 

[5] Qiao Zhongxue. Comparative Study of Shenzhen Component Index Based on Bi-directional LSTM[J]. Industrial 

Innovation Research, 2020, (14): 83-84.  

112




