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Abstract: In intricate traffic environments, traffic lights, as pivotal signaling tools, are 

influenced by factors such as observational distance and lighting conditions. This article 

proposes an enhanced YOLOv8 model that integrates a hybrid attention mechanism to adapt 

signal light recognition to complex traffic scenarios. Particularly, the introduction of the 

Global Attention Mechanism (GAM) within the YOLOv8 model is highlighted. GAM 

leverages a three-dimensional arrangement and dual-layer MLPs (Multilayer Perceptrons) to 

emphasize and strengthen channel features that are advantageous for the task of traffic light 

detection, while also maintaining cross-dimensional channel-spatial dependencies. It 

concentrates and merges spatial information with channel information through convolutional 

layers, enabling interaction and avoiding information loss by excluding max-pooling 

operations. Experimental results demonstrate the exceptional signal light recognition 

capabilities of the YOLOv8 model enhanced by the GAM attention mechanism in complex 

traffic scenes, fulfilling practical application requirements across all metrics. Post 

enhancement, the average recognition rate (Map@50) reaches as high as 93%, demonstrating 

the model's stability and efficiency in complex environments. The proposed method, based 

on the improved YOLOv8 model combined with the GAM attention mechanism for signal 

light recognition, effectively enhances the accuracy and robustness of traffic light detection 

in complex traffic environments, offering valuable research findings for the advancement 

and implementation of intelligent transportation systems. 

1. Introduction 

In contemporary life, transportation is intricately interwoven with human existence, and the 

transportation system plays a pivotal role in the functionality of an entire city. Within the 

transportation system, traffic lights are universally employed as a traffic signaling tool across the 

globe. Individuals can determine whether to continue or stop based on the changing colors, a concept 

that even young children can easily understand. If computers could accurately identify traffic lights, 

they could significantly assist individuals in conducting more rational analyses of traffic and 

pedestrian flow for traffic signal control, facilitating intelligent vehicle driving or mobile map 

navigation, and predicting commuting times. However, correctly recognizing the patterns of traffic 

lights is no simple task for computers. Initially, as the viewing distance changes, traffic lights 
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transition in size from small to large. When observed from a considerable distance in images captured 

by cameras, they might occupy just a few pixels.  

Accurately identifying the colors of traffic lights under such circumstances is challenging. 

Traditional machine learning methods, such as Support Vector Machines (SVM) and k-means, 

struggle with this task. As sample sizes increase, shallow neural networks gradually become 

inadequate for adapting to complex sample variations. This led to the development of deep neural 

networks building upon the foundation of shallow ones. Deep neural networks, by better emulating 

biological neural networks, can learn from shallow to deep, constructing crucial features and 

providing enhanced accuracy. Employing deep neural networks for object detection yields 

commendable detection outcomes. R. Gokul et al. [1] compared the performance of Faster R-CNN 

and YOLO, two deep learning models, in traffic light object detection. They concluded that YOLO 

outperforms Faster R-CNN in this domain. Liu et al. [2] utilized the YOLOv5 model for traffic signal 

object detection in railway settings, achieving exceptionally high accuracy to meet practical 

requirements. Qian et al. [3] further enhanced YOLOv5 by designing a Memory Feature Fusion 

Network, which improved the robustness of the traffic light detection algorithm. Following this, Li 

et al. [4] integrated various techniques, including a Coordinate Attention Layer, into the YOLOv5 

backbone network to enhance its feature extraction capabilities. This integration led to higher average 

precision and improved detection capabilities in tasks related to traffic lights and obstacle objects. 

While numerous studies have focused on traffic light object detection, the models used have been 

relatively outdated. To further enhance detection accuracy, this article utilizes the latest YOLOv8 

model [5] for superior performance. YOLOv8 exhibits notable improvements over previous models 

in the YOLO series. Lastly, to address the challenge of small-scale traffic light objects in complex 

traffic environments, a Global Attention Mechanism (GAM) [6] is incorporated to enable the model 

to focus on and learn the intricate details of these small targets. The aim is to achieve accurate 

identification of small-scale traffic light objects in complex traffic scenarios. 

2. Construction of Improved YOLOv8 Model 

2.1 The YOLOv8 Model 

Presently, YOLOv8 exhibits superior performance compared to YOLOv5 and YOLOv7, making 

it the most cutting-edge model within the YOLO family. Drawing inspiration from YOLOv7, 

YOLOv5, and YOLOvx, YOLOv8 incorporates modifications and enhancements based on their 

foundations. In the Backbone section, YOLOv8 integrates elements from CSPNet (Cross Stage 

Partial Network) and the residual C3 module, replacing C3 with the C2F module. This change ensures 

improved gradient flow and information propagation while maintaining a lightweight design. In the 

Neck section, similar to the Backbone, a transition from C3 to C2F is implemented, which reduces 

convolutional and fully connected operations. Within the head section, the model transitions from 

holistic feature map processing to feature segmentation. This modification effectively reduces the 

number of parameters and computational complexity, thereby improving the model's ability to 

generalize and its robustness. Transitioning from the anchor-based method for object detection to an 

anchor-free approach, YOLOv8 directly classifies and regresses each position in an image, enabling 

the detection of objects of arbitrary sizes and proportions with increased recall rates.In essence, 

YOLOv8 demonstrates a significant improvement over YOLOv7. Within YOLOv8, similar to its 

predecessors, the model is subdivided into five distinct variants: YOLOv8-x, YOLOv8-l, YOLOv8-

xm, YOLOv8-s, and YOLOv8-n. The enhanced version will leverage the YOLOv8-n iteration, which 

boasts a higher parameter count compared to YOLOv8-S, thus enhancing the model's capacity for 

efficient traffic light object detection. 
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2.2 Improvement Strategy 

In order to improve the YOLOv8 model's capability to accurately detect distant traffic lights and 

focus on subtle details, a Global Attention Mechanism (GAM) is integrated into YOLOv8 to optimize 

traffic light object detection. This addition allows YOLOv8 to capture intricate details of traffic light 

information in complex traffic scenarios, further building upon the existing model foundation. The 

GAM attention model consists primarily of channel attention sub-modules and spatial attention sub-

modules, each playing a crucial role in refining the model's attention mechanisms. Below, we delve 

into detailed explanations of these two modules. The integration of Global Attention Mechanism 

(GAM) within YOLOv8 is organized as illustrated in Figure 1. 

 

Figure 1: GAM Attention Model Diagram 

 

Figure 2: Channel Attention Submodule Diagram 

2.2.1 Channel Attention Submodule 

The primary objective of the Channel Attention Submodule is to focus on and enhance channel 

features that are most beneficial for the task of red-green light target detection. This is achieved by 

preserving information across three dimensions, specifically through a three-dimensional 

arrangement. This three-dimensional arrangement involves height, width, and channel dimensions, 

enabling the model to capture richer spatial-channel information. The structure of the Channel 

Attention Submodule is depicted in Figure 2.Within the Channel Attention Submodule, the three-

dimensional arrangement better captures and comprehends the complexity of the input data. Given 

the multidimensionality of the input data in image processing or similar tasks, data typically possess 

three dimensions: height, width, and channels (such as the red, green, and blue channels in an RGB 

image). Each dimension contains crucial information essential for understanding the content of the 

image. The three-dimensional arrangement in the Channel Attention Submodule aims to operate 

simultaneously across these dimensions, rather than focusing solely on one or two dimensions. This 

approach allows the model to comprehensively grasp the input data, capturing more details and 
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contextual information.In this way, the three-dimensional arrangement plays a crucial role in the 

Channel Attention Submodule. It not only helps the model retain more original information but also 

enables the model to better understand and utilize this information. This is particularly effective in 

enhancing model performance and accuracy when dealing with complex tasks.The Channel Attention 

Submodule utilizes a two-layer Multilayer Perceptron (MLP) to enhance cross-dimensional channel-

spatial dependencies. This implies that MLP considers not only inter-channel information but also 

spatial information, establishing dependencies between the two. The establishment of these 

dependencies is crucial for the model's performance in complex scenarios.The MLP is used here as 

an encoder-decoder structure. During the encoding phase, MLP compresses the input information, 

reducing its dimensionality and extracting key features. During the decoding phase, MLP expands 

these essential features back to their original dimensions to merge with other information. This 

encoding-decoding process enables the model to reduce computational burden while retaining 

information.In summary, the Channel Attention Submodule of GAM achieves effective integration 

and enhancement of channel and spatial information through a tridimensional arrangement and a two-

layer MLP, enabling the model to meet the demands of complex tasks more effectively. 

2.2.2 Spatial Attention Submodule 

The Spatial Attention Submodule is equally essential in the GAM attention mechanism, with its 

primary task being to focus on and enhance spatial information within images. Spatial information is 

crucial for many computer vision tasks, particularly those demanding precise localization, such as 

red-green light target detection.Within the Spatial Attention Submodule, to concentrate on and 

integrate spatial information, two convolutional layers are typically utilized. The roles of these two 

convolutional layers are to extract and integrate spatial information from the input feature map. The 

first convolutional layer may capture local spatial features, while the second one is responsible for 

integrating these local features into global features. Through this approach, the Spatial Attention 

Submodule can enhance spatial features that are useful for specific tasks.Moreover, the Spatial 

Attention Submodule incorporates information from the Channel Attention Submodule. It adopts the 

same reduction ratio r as BAM (Bottleneck Attention Module) to retrieve information from the 

Channel Attention Submodule. This implies that the Spatial Attention Submodule can not only focus 

on spatial information but also engage in effective interaction and fusion with channel information.In 

GAM, to preserve more information and avoid information loss, the Spatial Attention Submodule 

eliminates the maximum pooling operation. Although max pooling, a common downsampling 

technique, is employed to help the model reduce computational burden and improve the robustness 

of feature maps, in complex traffic scenes, it may lead to information loss, especially with large 

pooling windows or strides. Therefore, the Spatial Attention Submodule chooses to remove the max 

pooling operation to further retain feature mappings. 

 

Figure 3: Spatial Attention Submodule Diagram 

The Spatial Attention Submodule of GAM enhances the model's performance in recognizing red-

green lights in complex traffic scenes by integrating spatial and channel information, and employing 
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appropriate convolution and pooling strategies. By effectively understanding and leveraging the 

spatial features of the input data, the model is better equipped to excel in challenging traffic scenarios. 

The structure of the Spatial Attention Submodule is illustrated in the above Figure 3. 

2.2.3 Integrating GAM  

GAM, a global attention mechanism, comprises a Spatial Attention Submodule and a Channel 

Attention Submodule. The formulation process is depicted in equations (1) and (2) as shown below. 

𝐹2 =  𝑀𝐶(𝐹1)𝐹1                                  (1) 

𝐹3 =  𝑀𝑆(𝐹2)𝐹2                                  (2) 

Introducing an attention mechanism to YOLOv8-N enhances the neural network's ability to focus 

on traffic light information and refine local associations. This addition is integrated into the backbone 

section of the YOLOv8 network, following the convolutional layer of P5/32. The refinement enriches 

the attention capabilities of YOLOv8. 

3. Analysis of Experimental Findings 

3.1 Dataset 

The dataset utilized in this experiment is S2TLD, comprising 3,785 images. The distribution 

involves 3,065 images in the training set, 314 images in the validation set, and 379 images in the test 

set. The following Figure 4 illustrates a selection of examples from the dataset. 

 

Figure 4: Dataset Examples 

3.2 The experimental setup employed was as follows 

The experimental setup utilized the Windows 11 Professional operating system. The CPU 

processor employed was the 13th Gen Intel(R) Core(TM) i5-13400F, with a GeForce RTX 2080ti 

GPU boasting 22 GB of memory. The model training framework utilized PyTorch 2.1.2. 

3.3 Evaluation metrics 

To accurately assess the model's performance in detecting traffic lights, three metrics—R, 

Map@50, and Map@50-95—were employed to evaluate the constructed model. The Recall (R) 
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metric signifies the model's ability to correctly identify positive instances among all actual positive 

cases, as defined by the formula shown in Equation (3). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
                      (3) 

Whereas True Positives represent the number of samples correctly predicted as positive by the 

model, and False Negatives indicate the number of samples erroneously predicted as negative. 

On the other hand, Map@50 (Mean Average Precision at 50) and Map@50-95 (Mean Average 

Precision at 50-95) indicate the proportion of correct predictions in the top k predicted results. By 

calculating the average across all positions, Mean Average Precision is derived. Ultimately, 

computing MAP@50 entails the average precision of the first 50 predicted results. Conversely, 

Map@50-95 is a variant of Map@50, considering predictions from the 50th to the 95th positions. 

3.4 Results 

To validate the feasibility of the approach to improving the YOLOv8 model in this study, 

experiments were conducted on the dataset to assess the model's accuracy. After incorporating an 

attention mechanism into the YOLOv8 model, the detection precision and recall rate met the practical 

application requirements for recognizing traffic light signals. The specific numerical results are 

presented in the table below. Experimental analysis involving the addition of the GAM attention 

mechanism concludes that the enhanced YOLOv8 model fulfills the detection requirements for traffic 

light targets in complex traffic scenarios. The inference of the detection performance is illustrated in 

Fig. 5 and outlined in Table 1. 

 

Figure 5: Detection Performance 

Table 1: Inference Results 

Class R map@50 map@50-95 

all 0.879 0.933 0.685 

red 0.955 0.99 0.737 

yellow 0.89 0.912 0.703 

green 0.962 0.965 0.676 

off 0.852 0.867 0.623 

off 0.852 0.867 0.623 

By utilizing the open-source dataset S2TLD and preprocessing the training data, the images were 

randomly split into training, validation, and testing sets at a ratio of 80%, 20%, and 20% respectively. 

Achieving an average recognition rate of 93%, the improved model's performance exhibited a 

considerable enhancement, reaching a level suitable for practical applications. This advancement 
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holds significant practical implications for deploying vehicular monocular traffic signal recognition 

systems, aiding drivers in promptly identifying traffic lights during distractions, thereby promoting 

driver awareness and enhancing the driving environment. 

4. Conclusion 

In order to enhance proficiency in recognizing traffic lights in intricate traffic scenarios, this paper 

employs the cutting-edge YOLOV8 as the baseline model. Building upon this foundation, the GAM 

attention mechanism is introduced to endow YOLOV8 with enhanced learning of details and 

generalization capabilities. Experimentally, on the dataset, an average accuracy of 93% under the 

standard of MAP50 can be achieved, showcasing the further stable, efficient, and accurate recognition 

of traffic lights in complex traffic settings after the integration of GAM. This adaptation aligns the 

model well with the demands of contemporary traffic environments for the detection of traffic lights. 

Nevertheless, existing models still exhibit certain shortcomings that can be subject to further 

enhancement. For instance, post-improvement models may face challenges in deployment on 

lightweight in-vehicle recognition devices. Addressing these areas will be the focal point of our future 

endeavors. Our forthcoming efforts will persist in elevating and refining the model for enhanced 

deployment feasibility without compromising recognition efficiency and accuracy. 
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