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Abstract: Nowadays, existing fault diagnosis technologies have problems such as slow 

response speed, low accuracy, and weak adaptive ability. To prevent overfitting, this article 

can use a strictly separated set of training and testing samples to train the model. In order to 

ensure the generalization performance of the model, mutual confirmation technology was 

adopted. The computing power of GPUs can be utilized to effectively process massive 

amounts of data and improve training efficiency. In the field of fault diagnosis, the 

proposed method can achieve real-time collection of the operating status of the power grid, 

and use the established artificial intelligence model to analyze it, thereby achieving rapid 

identification and localization of system fault types and locations. This method has 

self-learning function, which can continuously improve the accuracy of fault diagnosis 

while accumulating data. At the same time, the algorithm also has an alarm function, which 

can predict and warn the system before it malfunctions, thereby taking corresponding 

preventive measures. At a transmission speed of 10 kbps, the error detection accuracy of 

the system reached 98.5%. This article can promote the development of power grid fault 

diagnosis and protection technology, which is conducive to providing new ideas and 

methods for power system fault diagnosis and relay protection. 

1. Introduction 

Nowadays, with the increasing complexity of power grid structures, fault diagnosis and relay 

protection have become urgent tasks. Although traditional methods have achieved some results, 

their ability to handle diverse faults in large and highly complex power systems is not strong 

enough. In recent years, artificial intelligence has become a new method for power system fault 

diagnosis and relay protection due to its excellent data processing and recognition capabilities. The 

above research indicates that artificial intelligence has great application prospects in improving the 

efficiency of power grid operation, especially in complex dynamic systems. 

This project aims to combine artificial intelligence theories and methods such as deep learning, 

machine learning, and data mining to study a new type of fault diagnosis and relay protection 

method for power systems. Firstly, this project aims to utilize big data and historical data to learn 
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and optimize deep neural network models, in order to improve their prediction accuracy and 

responsiveness. On this basis, combined with actual operating data, the article explores power 

system protection strategies based on intelligent algorithms to minimize the safe operation of the 

power grid. The expected research results are of great significance for improving the safe and stable 

operation of the power grid, and can provide new ideas for fault handling of similar complex 

industrial systems. 

This article consists of three main parts. Firstly, this article conducted in-depth research on it 

from three aspects: data collection, model training, and simulation experiments, and analyzed it. 

Secondly, this project aims to further study the integration of this method with the current power 

grid protection system, in order to achieve real-time information processing and automation of 

intelligent protection strategies for the power grid. Finally, this project can conduct empirical 

analysis and evaluation of the proposed theories and methods through field experiments and typical 

case analysis, providing theoretical basis and technical support for the safe and stable operation of 

the power grid. This project focuses not only on technological innovation and application, but also 

on evaluating the potential for industrial development. 

2. Related Work 

It is necessary to conduct research on fault diagnosis and relay protection technology to ensure 

the safe and stable operation of the power grid. Current research mostly focuses on improving 

diagnostic speed and accuracy, such as using machine learning and other methods to analyze fault 

signals. Ren Guanyu discussed the fault diagnosis and handling methods of the relay protection 

system in power plants [1]. Xu Fei analyzed and studied the hidden faults of relay protection in the 

power grid [2]. Yang Yifan explored the diagnosis and on-site treatment strategies for common 

faults in power plant relay protection [3]. Zhu Xu studied the online monitoring and fault diagnosis 

technology analysis of the secondary circuit of intelligent substation relay protection [4]. Zhang 

Ping studied the fault diagnosis technology for power system tripping based on peephole structure 

LSTM [5]. However, such studies often rely on a large amount of labeled data, and when the data 

quality is not high or the data volume is insufficient, the generalization ability and accuracy of the 

model can be limited. 

With the rapid development of AI technology, researchers are increasingly concerned about its 

application in power system relay protection. Especially deep learning techniques are seen as tools 

that can process complex power grid data and achieve efficient fault prediction. Wang Da explored 

the design and application scheme of a secondary fault intelligent diagnosis system based on 

regulatory cloud data analysis [6]. Wang Kun conducted fault analysis and protection research on 

distributed photovoltaic power distribution networks [7]. Guo Bingyun explored fault diagnosis and 

solutions for relay protection in power plants [8]. Ito T conducted verification of a new type of relay 

protection system based on high reliability process bus [9]. Qi Z studied the operation and control 

method of relay protection in flexible DC distribution networks compatible with distributed power 

sources [10]. However, existing research has mostly focused on the development of algorithms, and 

there is insufficient exploration of their application and stability in actual power grid environments, 

which limits their widespread application in industry. 

3. Method 

3.1 Data Collection and Preprocessing 

The first issue to be addressed in establishing an efficient artificial intelligence model in this 

article is data collection and preprocessing. During the operation of the power grid, there are not 
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only various time series data such as voltage, current, power, frequency, etc., but also a large 

number of sensors and monitoring devices. Due to the fact that the collected data is mostly noisy 

and not fully recorded, it is necessary to perform preprocessing such as data purification and 

interpolation. At the same time, in order to reduce the mutual influence between dimensions and 

improve the accuracy and efficiency of the model, it is also necessary to normalize the data. 

Wavelet transform is used to extract the characteristics of fault signals in power systems, and 

energy calculation is a method for evaluating signal strength. For a certain wavelet coefficient 

sequence 𝑐𝑛, its energy 𝐸 can be calculated using the following formula: 

E = ∑ |cn|
2N−1

n=0                                    (1) 

3.2 Feature Engineering and Model Selection 

Feature design is a crucial step in improving model performance. This project plans to use 

automatic feature extraction methods such as convolutional neural networks and circular neural 

networks to achieve feature extraction of raw temporal data. On this basis, this project can also 

combine expert knowledge from multiple disciplines, including statistical and spectral 

characteristics of electrical parameters. In terms of model selection, this project plans to use fusion 

learning algorithms such as random forest and gradient boosting machine, combined with deep 

learning models such as long short-term memory networks, to match the dynamic changes and 

nonlinear characteristics of the power grid. 

The K-means algorithm is commonly used for the classification of fault types in power systems. 

If 𝑥𝑖 is the 𝑖th sample and 𝐶𝑗 is the 𝑗th cluster center, then the objective function 𝐽 can be 

expressed as: 

𝐽 = ∑ ∑ ‖𝑥𝑖 − 𝐶𝑗‖𝑖∈𝐶𝑗
𝑘
𝑗=1                               (2) 

3.3 Model Training and Validation 

To prevent overfitting, the article can use a strictly separated set of training and testing samples 

to train the model. In order to ensure the generalization performance of the model, mutual 

confirmation technology was adopted. The computing power of GPUs can be utilized to effectively 

process massive amounts of data and improve training efficiency. Finally, an independent test set is 

used to evaluate the performance of the model, with evaluation metrics including accuracy, recall, 

F1 score, etc. 

For the linearly separable case, the classification boundary 𝑤𝑇𝑥 + 𝑏 = 0 is where 𝑤 is the 

weight vector, 𝑏 is the bias term, and 𝑥 is the input vector. The solution of 𝑤 and 𝑏 can be 

obtained by solving the following optimization problems: 

1

2
‖w‖ = 𝑦𝑖(𝑤

𝑇𝑥𝑖 + 𝑏)                             (3) 

Among them, 𝑦𝑖 is the category label of sample 𝑥𝑖. 

3.4 Implementation of Fault Diagnosis Algorithm 

In the field of fault diagnosis, the proposed method can achieve real-time collection of the 

operating status of the power grid, and use the established artificial intelligence model to analyze it, 

thereby achieving rapid identification and localization of system fault types and locations. This 

method has self-learning function, which can continuously improve the accuracy of fault diagnosis 

while accumulating data. At the same time, the algorithm also has an alarm function, which can 
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predict and warn the system before it malfunctions, thereby taking corresponding preventive 

measures. 

3.5 Optimization of Relay Protection Strategies 

Based on the results of intelligent diagnosis, this article adjusts and optimizes the relay 

protection strategy. Based on this, this article proposes an intelligent control method based on neural 

networks, which can adopt different protection methods according to different fault types and 

locations under uncertain conditions to reduce the harm of faults to the power grid. In response to 

this problem, this article intends to design corresponding algorithms to ensure fast and efficient 

removal of faulty lines under various faults, thereby ensuring the safe and stable operation of the 

power system [11-12]. In response to this problem, this article intends to design corresponding 

algorithms to ensure fast and efficient removal of faulty lines under various faults, thereby ensuring 

the safe and stable operation of the power system. 

When training neural networks, the error backpropagation algorithm is used to adjust network 

weights to minimize the loss function. Assuming the neural network has 𝐿 layers, for the output 

layer, the update rules for weight 𝑊𝐿 and bias 𝑏𝐿 are as follows: 

𝛥𝑊𝐿 = −𝜂
∂𝐸

∂𝑊𝐿
                                (4) 

𝛥𝑏𝐿 = −𝜂
∂𝐸

∂𝑏𝐿
                                 (5) 

Among them, 𝜂 is the learning rate. By using the chain rule, the gradient of the loss function on 

weights and biases can be calculated, and network parameters can be updated accordingly. 

4. Results and Discussion 

4.1 Experimental setup 

Parameter settings: 

This study constructed a simulated power system environment. This environment simulates 

various power network configurations, including different load conditions, power grid structures, 

and fault types. In this experiment, the artificial intelligence model was deployed on a 

high-performance computing platform to ensure high-speed data processing and computing power. 

The evaluation indicators include: 

Accuracy: The proportion of correctly diagnosed faults. 

Recall rate: The proportion of correctly identified fault events by the model to all actual fault 

events. 

Accuracy: The proportion of events correctly diagnosed as faults to all events diagnosed as 

faults. 

F1 score: The harmonic mean of accuracy and recall, used to measure the overall performance of 

the model. 

Response time: The time from the occurrence of a fault to the system's response. 

System stability: Evaluate the performance stability of the system during long-term operation 

and multiple fault events. 

4.2 Experimental Results 

(1) Load variation experiment 
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The load for experiment numbers 1-10 is 50%, the load for 11-20 is 75%, and the load for 21-30 

is 100%. The experimental data of load variation is shown in Figure 1. 

 

Figure 1: Load variation experimental data 

Under 50% load conditions, the performance indicators of the model are generally high, with a 

maximum accuracy of 99%, indicating that the model can accurately identify and handle faults 

under low load conditions. Under 75% and 100% load conditions, although the performance 

indicators slightly decreased, the overall accuracy remained at a high level, generally above 96%. 

Even under 100% load conditions, the lowest accuracy of the model reached 96.2%, indicating 

that the model has good stability and reliability under different load conditions. In addition, the F1 

score, as the harmonic mean of accuracy and recall, also demonstrates the comprehensive 

performance of the model in fault diagnosis tasks. In summary, these data indicate that the model 

can maintain high performance and stability under different load conditions, providing valuable 

reference information for further optimization and practical applications. 

(2) Experiment on diversity of fault types 

The fault types and response times under different experimental numbers are shown in Table 1. 

Table 1: Fault Types and Response Times under Different Experimental Numbers 

Experiment number Fault type Response time (ms) 

1 Short circuit fault 15 

2 Overload fault 18 

3 Ground fault 12 

4 Wire breakage fault 20 

5 Equipment failure 17 

6 Protection misoperation 14 

7 Abnormal frequency 13 

8 Voltage drop 16 

9 Harmonic interference 19 

10 Phase sequence error 15 

Firstly, overall, the response time of the model is less than 20 ms, indicating its ability to quickly 

respond to different types of faults. For most real-time systems, fast response speed is the most 

important. Through detailed analysis, the minimum system response time, which is 12 ms, was 

obtained. This may be because grounding faults have more significant characteristics, allowing the 

model to quickly identify and respond. Among them, the grounding fault time is the largest, only 20 

ms, mainly due to the complex signal characteristics of wire breakage, which requires a longer time 
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for analysis and verification. 

Furthermore, it can be seen that although the response time varies for different faults, the 

difference is not significant. This indicates that the model has good response ability to various types 

of faults, and there is no preference or adverse factors for a specific fault. 

Through the research in this article, valuable reference basis can be provided for further 

optimization and engineering practice of the model. This also provides us with an inspiration that 

when using this method, multiple factors must be comprehensively considered to ensure that the 

established model can meet the required performance. 

The accuracy, recall, precision, and F1 score of different experimental numbers are shown in 

Figure 2. 

 

Figure 2: Accuracy, recall, precision, and F1 score of different experimental numbers 

Overall, all experiments exceeded 95% in accuracy, recall, precision, and F1 score, 

demonstrating good performance. These two high standards demonstrate that the model can 

correctly identify the correct samples and reduce the false alarm rate. 

Among them, the accuracy, recall, precision, and F1 scores of experiments 3 and 7 were all 

above 98%, demonstrating very high performance. The second and ninth experiments, although 

small, still maintained a level of 96% or higher, indicating the stability of the model under various 

conditions. It is worth noting that F1 score is the harmonious average of accuracy and recall, and is 

also an important evaluation method. In all the experiments, the F1 score was very high, with high 

accuracy and recall, which further demonstrates the excellence of this model. 

(3) Real time performance experiment 

The data inflow rate and fault detection accuracy under different data stream numbers are shown 

in Table 2. 

Table 2: Data inflow rate and fault detection accuracy under different data stream numbers 

Data flow serial number Data inflow rate (kbps) 
Fault detection accuracy 

(%) 

1 10 98.5 

2 50 98 

3 100 97.5 

4 200 97 

5 400 96.5 

6 800 96 

7 1000 95.5 

8 2000 95 

The experimental results show that the error detection accuracy of the system reaches 98.5% at a 
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transmission speed of 10 kbps. However, as the data transmission rate increases, precision can 

decrease. At 2000 kbps, the accuracy drops to 95.0%. This indicates that for high-speed data 

streams, the performance of the model can be affected. On this basis, a fault diagnosis method 

based on neural networks is proposed. In addition, due to the large amount of data flow and model 

computation, it is easy to cause incorrect detection. 

It also found that although the prediction accuracy decreases, the prediction accuracy of this 

method can reach 95.0% under high traffic conditions, indicating that the method has good 

robustness against massive data. This article aims to improve the performance of the model by 

optimizing algorithms, increasing computing resources, or using distributed computing. 

Overall, this article demonstrates the performance of the model at different data rates and 

provides valuable references for the model. In practical applications, it is necessary to balance the 

relationship between input rate and error detection accuracy, so that it can adapt to different 

application scenarios.  

The relationship between fault detection delay and system response time and CPU/memory 

usage is shown in Figure 3 (Figure 3 (a) shows the relationship between fault detection delay and 

system response time, and Figure 3 (b) shows the relationship between CPU usage and memory 

usage (%). 

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

 Fault detection delay (ms)

 System response time (ms)

Nu
m

er
ica

l v
alu

e

Data flow serial number

(a)

0 1 2 3 4 5 6 7 8 9

20

30

40

50

60

70

80

90

 CPU usage rate (%)

 Memory usage rate (%)

Nu
m

er
ica

l v
alu

e

Data flow serial number

(b)

 

Figure 3: Fault detection delay versus system response time and CPU/memory usage 

Firstly, due to the presence of faults, both fault detection delay and system response time can 

increase with the increase of the sequence. This indicates that as the data size becomes larger or 

more complex, the failure and response speed of the model can become slower. This is likely due to 

the increase in computational complexity as data processing capabilities improve. 

Secondly, the usage of CPU and storage space is constantly increasing. As the number of data 

stream sequences increases, the required computational resources and memory also increase. This 

data shows that when dealing with larger or more complex data flows, the required hardware 

resources can also grow accordingly. 

Research has found that although various economic indicators are increasing, the growth rate has 

not shown exponential growth, indicating that this model has strong resource management and 

efficiency optimization capabilities. However, in the case of long-term operation or massive data, 

dynamic tracking is also necessary to ensure the stability and performance of the model. 

In summary, this article has significant implications for optimizing the model, improving system 

efficiency, and enhancing the level of resource management in the system. In practical applications, 

to ensure the stable and reliable operation of the system, it is necessary to make appropriate 

adjustments to the model parameters and hardware structure according to specific application 

scenarios and requirements. 
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(4) Long-term stability experiment 

The long-term stability experimental data is shown in Table 3. 

Table 3: Long-term stability experimental data 

Monitoring 

date 

Running 

time 

(hours) 

Accuracy 

rate(%) 

Recall 

rate 

(%) 

Accuracy 

(%) 

F1 

score 

Fault 

detection 

times 

Number 

of false 

positives 

Number 

of 

missed 

reports 

2023/5/1 0 98.5 99 98 98.5 0 0 0 

2023/5/2 24 98.5 99 98 98.5 10 1 0 

2023/5/3 48 98.4 98.9 97.9 98.4 21 2 1 

2023/5/4 72 98.3 98.8 97.8 98.3 32 3 2 

2023/5/5 96 98.2 98.7 97.7 98.2 42 4 3 

2023/5/6 120 98.2 98.7 97.7 98.2 53 5 4 

2023/5/7 144 98.1 98.6 97.6 98.1 64 6 5 

2023/5/8 168 98.1 98.6 97.6 98.1 74 7 6 

... ... ... ... ... ... ... ... ... 

2023/5/30 720 97.5 98 97 97.5 310 30 25 

Firstly, during the period from May 1, 2023 to May 30, 2023, the prediction accuracy, recall, 

precision, and F1 score of the model all decreased, but the overall change was not significant, 

indicating that the model still has good stability in long-term operation. Secondly, the number of 

fault detections increases with the increase of running time, which is expected, as longer running 

time means more opportunities for faults to be detected. However, the number of false positives and 

false negatives is gradually increasing, reflecting the potential fatigue or performance degradation 

of the model after long-term operation. But even after running for 720 hours, the key indicators 

such as accuracy and recall of the model still remain at a high level, indicating that the model has 

good long-term stability and reliability. 

For practical applications, although false positives and false negatives are inevitable, controlling 

their quantity within an acceptable range is crucial. Therefore, based on these data, it can further 

optimize and adjust the model to reduce false positives and omissions, and improve the stability and 

reliability of the model. 

Experimental discussion: 

This method integrates multiple artificial intelligence technologies, which not only improves the 

accuracy of fault diagnosis and fast response ability, but also enhances the adaptability and 

intelligence of the system. After experimental verification, the method proposed in this article can 

achieve good results in various power grid simulation environments, especially with stronger ability 

to deal with complex and hidden faults. At the same time, the application of intelligent relay 

protection technology can greatly improve the safety and reliability of the power grid, providing 

strong support for the modernization and intelligent development of the power grid. 

The research results of this article can provide new ideas for improving the efficiency and safety 

level of power grid operation, and it is also a very meaningful research topic. 

5. Conclusions 

This article conducts in-depth research on artificial intelligence based power grid fault diagnosis 

and relay protection technology. Firstly, this article intends to collect and preprocess massive data to 

obtain high-quality training samples, thereby providing high-quality training samples for deep 

learning models. On this basis, combined with advanced machine learning algorithms such as deep 
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learning and ensemble learning, a composite fault diagnosis system based on deep learning is 

constructed. At the same time, research intelligent relay protection strategies to achieve adaptive 

regulation and optimization of the power grid under fault conditions. Experiments have shown that 

the artificial intelligence system has good performance and can effectively identify and locate 

various types of faults in the power grid, with improved accuracy and recall compared to traditional 

methods. This article conducted practical tests on the system, and the results showed that the 

method has strong emergency response capabilities. In addition, after a long period of stability 

testing, the system has good stability and can adapt to changes in power grid load and structure. 

Although there have been some results, there are still many shortcomings. Firstly, the artificial 

intelligence model used requires high training samples, but it is difficult to obtain high-quality 

erroneous data in practical applications. Secondly, the generalizability of this model remains to be 

tested in situations such as unconventional faults and extreme working conditions. In addition, due 

to its high complexity and high requirements for computing resources, it can be greatly limited in 

small-scale or resource limited power grid environments. Future research can focus on some 

important aspects to address the aforementioned shortcomings. Firstly, the article can research semi 

supervised and unsupervised learning methods for large-scale labeled data. Secondly, the article can 

study more effective algorithms to reduce the demand for computing resources and better adapt to 

the practical applications of small and medium-sized power grids. On this basis, it can also conduct 

in-depth research on the performance of this method under unconventional faults and extreme 

working conditions, in order to improve its robustness and reliability. On this basis, interdisciplinary 

research can be carried out to integrate multiple fields such as power engineering and artificial 

intelligence, promoting the development and application of smart grid technology. 
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