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Abstract: The transmitter is a key component in electronic systems and equipment for 
amplifying signal power, and the traveling wave tube (TWT) is a core component that 
realizes the key performance within the transmitter. For a long time, the slow wave 
structure (SWS) has been a key factor that restricts the improvement of TWT performance 
and the reduction of costs, which in turn limits the overall output power and operating 
frequency band of the transmitter. Therefore, the potential of helix slow wave 
structure(SWS) working at W band and higher frequency range is considered and the novel 
helix SWS is presented for high power wideband TWT in this paper. The proposed novel 
SWS consists of helixes that are arranged periodically about the axis of the conventional 
dielectric-lined circular waveguide. Here, the helixes are fixed in the dielectric layer, and a 
solid electron beam with larger radius passes through the waveguide center. The 
slow-wave dispersion equation and interaction impedance expression are obtained by the 
spatial harmonics method. The effects of the SWS parameters on the RF characteristics, 
including the pitch and the thickness and the angle of the helixes, are numerically 
calculated and discussed. It is indicated that selecting the appropriate thickness and angle 
of the helixes can increase the interaction impedance with only slight influence on the 
dispersion characteristics (pitch fixed). Moreover, compared with a dielectric-lined 
azimuthally periodic circular waveguide (DLAP-CW), the novel circuit is much shorter 
than the DLAP-CW-based circuit with good performance at the working frequencies. The 
HLAP-CW, therefore, will favor the miniaturized design of a high-power millimeter-wave 
TWT. 

1. Introduction 

Recently, there is an increasing interest in the investigation on high power miniature 
traveling-wave tubes (TWTs) for potential applications in wideband millimeter wave and even 
Terahertz devices, such as millimeter wave radar and electronic-warfare [1]-[4]. As the core part of 
power amplifier for an electromagnetic (EM) wave, the slow-wave structures (SWSs) critically 
determine the performance of TWTs [5]. When the operating frequency increases to the 
millimeter-wave range, the output power of a TWT based on conventional SWSs decreases 
significantly due to beam-current density limitations, thermal-mechanical stability and fabrication 
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issues [6]. For these reasons, the investigation of novel SWSs for miniaturization of high-power 
millimeter-wave TWTs is very important. 

The natural good properties of helix make it employ widely in the TWT for its flat dispersion 
characteristics and high interaction impedance. However, due to the electron beam going normally 
through the inner space of helix, the dimension of the beam tunnel is thus limited and reduces 
sharply with frequency increase, which leads to a small beam current and consequently decreasing 
output power. As so far the helix TWT can only works below 60GHz, and the manufacture and 
assembly become more difficult with shorter working wavelength. For breaking through the normal 
beam tunnel limit, can we use an electron beam with larger radius outside the helix? If so, the helix 
may work at W band and higher frequency range.  

Meanwhile, the dielectric-lined azimuthally periodic circular waveguide (DLAP-CW), which has 
several peculiar characteristics of the large beam apertures and the high precision of manufacturing, 
is regarded as potential SWS for high-power TWTs at millimeter-wave and THz frequencies [7]. On 
the other hand, its high phase velocity may restrict the further application in the compact TWT 
interaction circuits, which indicates that the TWT based on such a structure need relatively higher 
operating voltage for satisfying the synchronous conditions in the beam-wave interaction. 

Based upon above considerations, a novel helix-loaded azimuthally periodic circular waveguide 
(HLAP-CW) is now proposed for potential applications in high power broad band TWTs working at 
W band and higher frequency. The novel structure consists of helixes that are arranged periodically 
about the axis of the conventional circular waveguide, as shown in Fig.1.It inherits the unique 
properties of the conventional helix structure by inherently wide bandwidth, low dispersion and 
relatively high interaction efficiency [8], and N-helixes may interact with one electron beam having 
larger current for high output power ;furthermore, the microelectro-mechanical systems (MEMS) 
technologies [9]-[10] will alleviate the machining difficulties, which is helpful for a miniaturized 
radiation sources in millimeter and submillimeter-wave regimes [11]-[12]. Therefore, the 
HLAP-CW may be enabling SWS for miniaturized broad band high power millimeter-wave TWTs. 

In this paper, the slow-wave characteristics of the HLAP-CW are studied by using the spatial 
harmonics method (SHM) [13] and the field-matching method with an appropriate eigenfunction 
expansion. The analysis has the advantages of very fast convergence and high accuracy [14]. In 
Section II, the field expressions, analytic dispersion and interaction impedance are obtained by 
SHM. The key challenge for the analysis of the HLAP-CW is how to satisfy the boundary 
conditions between the helixes, and then expand the solution based on the azimuthal periodicity. In 
Section III, the numerical results from Section II, including normalized phase velocity and 
interaction impedance, are compared with HFSS [15] simulations. Additionally, the relationships 
between the HLAP-CW slow-wave characteristics and the structure parameters are derived. A brief 
summary and conclusions are given in Section IV. 

2. Theory 

The configuration of the HLAP-CW is shown in Fig. 1, and can be analyzed in terms of the 
cylindrical coordinate system (r, φ, z). In this paper, the sidewise connection of the two-layer helical 
sheaths are ignored in order to investigate the RF properties of the novel structure conviently[16]. 
And helix made up of infinitely thin tape/wire. Regarding the structure geometry, L is the pitch, N is 
the number of helixes, the thickness of the helix cross section is represented by d and the angle of 
wedge φL,i is equal to φe,i-φs,i . The structure has 1/N azimuthal symmetry, in other words, the 
angular period φp is 2π/N.  
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(a)                                          (b) 

Figure 1: Schematic of HLAP-CW. (a) cross-section of HLAP-CW (b) 3-D view of HLAP-CW 

2.1 Field Expression and Boundary Conditions 

Because of the azimuthal periodicity, Floquet theory is employed to derive the field expressions. 
The transverse field components can be expressed as a series of longitudinal field components, 
which is represented as a summation of spatial Bloch components. In addition, all the solutions in 
the HLAP-CW are hybrid modes (both TE and TM modes are required). Omitting e (jωt - jβz), the field 
expressions for Ez and Hz are derived, and the other field expressions can then be derived from them. 
In the subsequent analysis, ω represents the angular RF frequency, β represents the propagation 
constant, and m is the azimuthal mode index, which represents the periodicity of the RF field in the 
azimuthal direction. We divide the structure from Fig. 1 into four regions: Region 1 (R2<r<R1), 
Region 2 (R3<r<R2), Region 3 (R4<r<R3), and Region 4 (r<R4). 
In Region 1 (R2 < r < R1),  
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In Region 2 (R3 < r < R2), because helixes are arranged periodically about the axis of the circle 
waveguide, the field equations are expressed as an infinite sum of the eigen standing waves using 
Fourier expansion: 
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In Region 3 (r < R3), 
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In (1)-(4), kc1
2= kc2

2= kc3
2= β2- k0

2 are the transverse wavenumbers of Region 1, Region 2 and 
Region 3, respectively; k0

2=ω2ε0μ0 is the wavenumber in free space with dielectric constant ε0 and 
magnetic permeability μ0. kn

Ⅰ= kn
Ⅲ= nN+m, and kl,i= lπ/φL,i are the azimuthal wavenumbers of 

Region 1, Region 3 and Region 2, respectively; and A1n, B1n, C1n, D1n, Al,i, Bl,i, Cl,i, Dl,i, A3n and B3n 
are the amplitude coefficients of each region.  

We now derive the boundary conditions at the interface between each region. 
The tangential components of the electric field are continuous at r=R2 and r=R3, respectively, 
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The electric field components along the helix direction are zero. 

, 1

2

,

1 1( sin cos ) | 0
s i

e i

z r RE E d





  


 
                    (6) 

, 1

3

,

3 3( sin cos ) | 0
s i

e i

z r RE E d





  


 
                    (7) 

Finally, the tangential component of the electric field is zero at the boundary of the perfect 
electric conductor at R1: 
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2.2 Dispersion Equation 

Substituting the field expressions from each region into the aforementioned boundary conditions 
to eliminate the amplitude constants, the corresponding frequency for every given axial 
wavenumber β is then determined, i.e., the dispersion relation is found from the following 
expression: 
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In the practical calculation, a sufficiently accurate result with the relative error less than 10-6 can 
be got by considering only three terms (n=-1, 0, 1).  
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2.3 Interaction Impedance 

The interaction impedance in linear-beam microwave tubes represents the strength of the 
beam-wave interaction, and it is defined as  
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where Ezn is the on-axis electric field of the nth space harmonic, Ezn
* is its conjugate, βn is the 

axial wavenumber of the nth space harmonic, and P is the total power flow in the z- direction (axial 
power flow). In (11), P can be expressed as 
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Therefore, the axial power flows through each region is obtained as 

   (13) 

Where, 
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       (14) 

The relative values of A1n, B1n, C1n, D1n, Al,i, Bl,i, Cl,i, Dl,i, A3n and B3n can be reduced by solving 
the (1)-(3) with an orthgonality relation. Then, the interaction impedance of the HLAP-CW is 
obtained. 

3. Numerical Results and Discussions 

The dispersion equation (10) and the interaction impedance equation (14) can be solved 
numerically using the Matlab computer software package [17]. Here, we present the numerical 
results for the slow-wave characteristics of the helix-loaded azimuthally periodic circular 
waveguide. 

In order to verify the correctness of the present theory, the Matlab results are compared with 
those simulated using HFSS [15]. In our simulation, the total number of mesh refinement is more 
than two ten thousand for the structure with the discretisation error of 0.021216 in center operation 
frequency. This comparison is shown in Fig. 2. The figure shows the dispersion characteristics and 
the interaction impedance of for an HLAP-CW with R2/R1=0.75, d/R1=0.1, L/R1=0.2, φL,i/φp=0.4, 
N=8 and R1=1 mm. It is clear that the numerical results from the present theory agree well with the 
results from HFSS. 

       

Figure 2: (a) Dispersion curve of HLAP-CW and (b) Interaction impedance of HLAP-CW 
calculated using the present theory and HFSS 

We now investigate the effects of the structure parameters on the slow-wave properties of the 
HLAP-CW based on the present theory. Figure 3 shows the effect of the pitch on the normalized 
phase velocity and the interaction impedance of the HLAP-CW. Here, the structure parameters are 
the same as those in Fig. 2. It can be seen that the normalized phase velocity increases as the pitch 
increases. This effect is mainly caused by the fact that increasing the pitch of the helix makes the 
actual propagation distance of the electromagnetic wave become shorter in the case of the same 
axial distance. Further researches indicate that the variation trend of the interaction impedance with 
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the pitch variation is non-linear relationship, as shown in Fig. 2(b). When the pitch increases, the 
interaction impedance decreases in the low frequency of the operating band, and then increases in 
the high frequency. In addition, the operating bandwidth is also reduced with the increase of the 
pitch. It is therefore necessary to choose the proper pitch parameter for meeting desired device 
bandwidth and interaction impedance. 

       
(a) normalized phase velocity and (b) interaction impedance. 

Figure 3: Comparison of the slow-wave characteristics for HLAP-CW with R2/R1=0.75, d/R1=0.1, 
φL,i/φp=0.4, N=8 and R1=1 mm: 

The effect of the dielectric constant of the structure on the slow-wave characteristics of the 
HLAP-CW is studied in Fig. 4, where the pitch of the helix held fixed at 0.1. The results are shown 
that the normalized phase velocity, the operating bandwidth and the interaction impedance all 
decreases when the dielectric constant increases. And the dispersion curve becomes more flatter at 
the same time.  

       
(a) normalized phase velocity and (b) interaction impedance. 

Figure 4: Comparison of the slow-wave characteristics for DLAP-CW with R2/R1=0.75, d/R1=0.1, 
L/R1=0.2, N=8 and R1=1 mm: 

In Fig. 5, the normalized phase velocity and the interaction impedance for several widths of the 
helix cross section are plotted versus frequency while the pitch and the angle are fixed. It is clear 
that the phase velocity decreases, and the dispersion curve flattens when the width becomes wider, 
which indicates that the synchronous beam voltage can be reduced by decreasing the width of the 
helix cross section. At the same time, the interaction impedance initially increases but then 
decreases, which has a similar trend to that in Fig. 4(b). Curve C in Fig. 5(b) indicates that the 
interaction impedance of the HLAP-CW with d/R1 = 0.1 is optimal. The angle and the width of the 
helix cross section for a specific HLAP-CW design must be carefully optimized to improve the 
performance of the beam-wave interaction in an HLAP-CW-based TWT. 
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(a) normalized phase velocity and (b) interaction impedance. 

Figure 5: Comparison of the slow-wave characteristics for DLAP-CW with R2/R1=0.75, L/R1=0.2, 
φL,i/φp=0.4, N=8 and R1=1 mm: 

Finally, we compare the performances of the HLAP-CW and the DLAP-CW in the case of the 
same structure parameters, where the structure parameters are the same as those in Fig. 2. In Fig. 6, 
the results show that the operating bandwidth of the HLAP-CW is much wider than that of the 
DLAP-CW, and the normalized phase velocity of the HLAP-CW is also much lower. It is proved 
that the HLAP-CW can effectively reduce the interaction voltage. Furthermore, Fig. 6 (b) reveals 
that the interaction impedance of the HLAP-CW is much higher than that of the DLAP-CW in the 
operating band. The higher interaction impedance indicates that the HLAP-CW can effectively 
improve the interaction efficiency, which may lead to a higher gain. In other words, the HLAP-CW 
may reach a higher gain with the same tube length or obtain the same gain with a smaller tube 
length since the gain of a tube increases as the averaged coupling impedance increases. Therefore, 
the HLAP-CW is more suitable for application in compact TWTs than that of the DLAP-CW. 

       

Figure 6: Comparison of the slow-wave characteristics for DLAP-CW with ε=20, R2/R1=0.75, 
d/R1=0.1, R4/R1=0.3, φL,i/φp=0.4, N=8 and R1=1 mm and R4=2 mm and DLAP-CW with R2/R1=0.75, 

d/R1=0.1, L/R1=0.1, φL,i/φp=0.4, N=8 and R1=1 mm: (a) normalized phase velocity and (b) 
interaction impedance. 

4. Conclusion 

In this paper a novel linear-beam TWT circuit structure, the helix-loaded azimuthally periodic 
circular waveguide (HLAP-CW), has been investigated. Equations for the slow-wave characteristics 
including phase velocity and interaction impedance are derived using the spatial harmonics method, 
and the solutions are validated by HFSS. The numerical results reveal that the influence of the pitch, 
the angle and the width of the helix cross section all significantly impact the HLAP-CW slow-wave 
characteristics. Furthermore, compared with a dielectric-lined azimuthally periodic circular 
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waveguide (DLAP-CW), the interaction impedance of the HLAP-CW is much higher than that of 
the DLAP-CW across the operating band, which implies that there will be a significant 
improvement in the interaction efficiency of a HLAP-CW-based TWT. On the other hand, the 
operating bandwidth of the HLAP-CW is also much wider with the lower phase velocity. The lower 
phase velocity proves that the HLAP-CW can effectively reduce the interaction voltage, so the 
DLAP-CW holds promise for compact TWT application. Therefore, the novel HLAP-CW structure 
has potential for application in compact broad band millimeter wave and even Terahertz devices. 
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