
Research on Information Management System of Small,

Medium and Micro Enterprises (SMMEs) Based on

Software Architecture

Ning Mao1, Xinmao Wang1

1College of Computer Science and Engineering, Jishou University, Zhangjiajie, 427000, China

Keywords: Requirements Analysis; Security and Confidentiality Design; Enterprise

Information Management; Software Architecture

Abstract: This paper takes the System for Small, Medium and Micro Enterprises (hereinafter

referred to as SMMEs) as the research object for in-depth research and discussion. The

system provides integrated business finance and product inventory management for SMMEs,

offering theoretical guidance for the entire business process, including procurement and

warehousing, sales billing, account checking, settlement and analysis. The role of system

architecture analysis and design in software system and development is introduced with the

SMME information management system as an example. This paper will primarily focus on

the analysis, design, and implementation of system architectures, as well as the design of

system security and confidentiality measures.

1. Introduction

The advent of the Internet has facilitated the continuous integration and reconstruction of

technological innovation and commercial elements, which in turn has led to the emergence of new

requirements for the development of micro, small and medium-sized enterprises. In order to address

the six challenges faced by traditional operations and management, namely low efficiency of manual

bookkeeping, difficult account checking and settlement, chaotic inventory management, high

operating cost, difficult data coordination, and high cost of customer acquisition, it is necessary to

implement a solution that will facilitate the transition from a manual to an automated system. The

application of software architecture analysis and design methods in actual combat has demonstrated

the value of such methods in guiding the actual development of enterprise management systems.

The utilisation of the scientific architecture requirements analysis method during the system

development process can facilitate the establishment of a robust foundation for the overall project

development. In the architectural requirements phase, the principal tasks include the acquisition of

requirements, the identification of components and the division of system function modules. Firstly,

the requirements must be identified and collected in order to ascertain the real needs and pain points

of the enterprise. Secondly, a demand analysis must be conducted in order to complete the existing

requirements sorting and component identification. Thirdly, the functional modules of the whole

system must be further divided in order to provide systematic guidance for the subsequent

development work.

Information and Knowledge Management (2024)
Clausius Scientific Press, Canada

DOI: 10.23977/infkm.2024.050109
ISSN 2523-5893 Vol. 5 Num. 1

61

 The selection of an appropriate software system architecture style can not only reduce the cost of

system construction, but also facilitate the enhancement of non-functional system indicators. The

architectural style may be classified into five categories: data flow style, call/return style, independent

component style, virtual machine style, and warehouse style. It is not uncommon for people to utilise

data flow style, batch style, independent component object-oriented style, implicit calling, virtual

machine interpreter style and warehouse-style database style[1]. Object-oriented programming

abstracts real problems into objects and solves them by calling the properties or methods of each

object. The implicit call is initiated by the occurrence of an event, and upon the triggering of said

event, the system initiates the automatic calling of all registered processes. The interpreter style

enables the interpretation of user instructions through an interpreter, thereby facilitating the

implementation of flexible custom scenarios. In the database style, user information is stored in a

database in order to ensure the persistence, security and sharing of data. In addition to the

aforementioned five architectural styles, cloud native architecture is also a prevalent architectural

style in the contemporary era. It is a collection of architectural principles and design modes based on

cloud native technology, which aims to maximise the separation of non-business code parts in cloud

applications.

In the context of the enterprise, the name, telephone number, bank card number, payment form,

receipt and other information data are subject to the privacy of the individual or enterprise. Therefore,

it is necessary to prevent individuals with ulterior motives from stealing data. In particular, instances

of telecommunications fraud have become increasingly prevalent in recent years. It is therefore

evident that the security of the system cannot be guaranteed by local design. The system’s security

and confidentiality are ensured at the application layer, transmission layer and data layer. At the

application layer, double-layer encryption, graphic verification and mobile phone SMS verification

are employed to guarantee the security of sensitive information and the system's anti-attack capability.

At the transmission layer, HTTPS, timestamps, digital signatures and other technologies are utilised

to guarantee data transmission. Finally, at the data layer, data backup and read and write separation

are employed to guarantee the disaster recovery capability and performance of the system.

2. System Architecture Requirements Analysis

(1) Demand analysis and refining

Once the demand collection process has been completed, it is necessary to analyse and refine the

practical problems and suggestions of multiple parties. This is followed by the construction of the

key component of the project demand library, which is based on the “4 + 1” view. Finally, the existing

requirements are prioritised. Subsequently, the project requirements library is further divided through

the use of data flow diagrams, UML diagrams, and class diagrams, as well as other tools, in order to

select reusable components. In the event that no components meet the requisite conditions, they

should be temporarily stored in a list of components to be developed in file form. These components

should then be developed one by one in the subsequent architecture implementation stage[2]. For

instance, in the course of communication with enterprises, it became evident that the issue of return

and exchange represents a significant challenge in the business process of enterprises. Firstly, the

return and exchange process must involve all levels of enterprise, and there is often a lack of clarity

or misunderstanding during the transmission of information. Secondly, the reconciliation and

settlement of accounts is challenging. As the number of returns and exchanges reaches a certain

threshold, the registration of enterprises becomes challenging, and coordinating with the upstream

enterprise data becomes difficult. In order to address this issue, we conducted an investigation into

the relevant components within the component library. Following this, we recorded the components

that had not been successfully developed in a list of components to be developed, and awaited further

62

instructions.

(2) Requirements identification and collection

At the outset of a project, it is essential to ascertain the objective and parameters of the project's

development. This is followed by the identification of relevant stakeholders in accordance with the

project’s scope. The enterprise information management system typically comprises end users,

enterprise representatives, development teams, test teams, field experts and other personnel

representatives. Once the research object has been determined, a preliminary understanding can be

gained through the use of a questionnaire survey. Once the materials have been compiled, a targeted

research meeting can be held to address the needs of all relevant stakeholders. The demand research

meeting serves to ascertain the genuine business needs and enterprise pain points. This information

is then further refined and summarized by the development team, thus enabling the collection of

accurate and valuable data.

(3) System function and module division

Based on the preceding analysis and summary, the system function can be preliminarily divided

into modules. In terms of the upstream enterprise, the system encompasses the functions of supplier,

purchase order, processing order, receipt, and return form. With regard to the enterprise itself, the

system encompasses product, merchant setting, inventory management, employee management,

report, expense payment, business log, online cloud store, enterprise cloud warehouse, and other

functions[2]. Finally, in terms of the downstream enterprise, the system encompasses customer, sales

order, delivery note, receipt, and other functions. To illustrate, in order to meet the bespoke

requirements of customers, upon receipt of the customised product information from customers, the

enterprise transmits it to the corresponding suppliers, who then process it to complete the product

customisation.

3. System Architecture Style Design and Implementation

In conjunction with the actual project, the enterprise management system employs three principal

architectural styles: implicit call, database style and cloud native architecture. The implicit invocation

style serves to reduce the coupling of the system, thereby ensuring its good reuse and scalability[3].

The database style is characterised by the retention of user data, screens and the integration of various

business data, which supports visualization. The cloud native architecture is associated with a

reduction in the development cost and the creation of a business that is more lightweight, agile and

highly automated. The following section will provide a detailed overview of the three architectural

styles employed in the system.

(1) Database style

The system employs the MySQL database, which offers low cost and good portability

characteristics that align with the business’s needs. Furthermore, the lake warehouse integration,

which is based on an open architecture, enables the storage, extraction, cleansing, transformation, and

integration of source data in a timely manner, ultimately leading to the creation of the final data

collection. The data lake is capable of accommodating a wide range of data formats, greatly enhancing

the flexibility of the system in terms of data storage. The subject-oriented nature of the data warehouse

is particularly beneficial for the analysis of system reports, as it enables the integration of data at a

higher level of abstraction. This enables users to submit different report requests, such as sales flow,

purchase flow, delivery reminder table, and so forth. It eliminates the need for inefficient database

searches, providing users with more comprehensive decision support through OLAP for

corresponding topic queries and impromptu analysis. To illustrate, if a user requests a sales flow

report, the initial display will show the sales flow for the entire year. The user can then view the

monthly sales flow. At this juncture, OLAP will perform further drilling of data in the data warehouse,

63

in accordance with the classification requirements. This will result in the calculation and analysis of

data storage in the data application layer, which will then be rendered through the front-end Vue3 to

achieve enhanced visualization of the reports.

(2) Cloud-native architecture

The system is an enterprise management system based on Software as a Service (SaaS), where

software applications are deployed on cloud computing servers and made available to users via the

network. The system does not require users to purchase and maintain software applications or provide

support for multi-terminal synchronisation. Instead, users can simply subscribe to the system on an

as-needed basis. The implementation of the components is conducted in a sequential manner,

commencing with the components to be developed and culminating in the assembly of the

components based on the previous component mapping once all components are ready. In the

component assembly phase, given that the entire project was developed using a native cloud-based

architecture, we employed Docket for containerised component assembly and testing across different

modules. The Mesh architecture mode separates the middleware framework from the business process,

with the non-business part sunk. This has the effect of greatly improving the efficiency of

development. In the testing phase of the system, the final testing phase proceeded at a considerably

accelerated pace, exceeding expectations, due to the extensive testing of the previous micro-service

architecture and Docket container technology during the development phase. The deployment and

testing efforts have been significantly reduced due to the availability of cloud-native automated tools

for automated delivery, which are not available in traditional development tools. Concurrently, a

three-layer B/S architecture was adopted to divide the entire business application into a performance

layer, a business logic layer, and a data access layer[4]. This architectural approach facilitates

subsequent maintenance and cross-platform accessibility. Furthermore, during the software design

phase, the enterprise, middle, and downstream micro service segmentation was implemented. This

approach, although it increased the complexity of the test and operations, ultimately proved beneficial

in enhancing the overall system.

(3) Implicit invocation

In the commodity management module of the system, it is often necessary to face frequent updates

of a commodity state, which often involves multiple modules of the system. To illustrate, operations

such as the addition of products, returns and exchanges, and inventory movements necessitate the

invocation of multiple classes, including the inventory management class within the inventory

management module and the product management class within the product management module, in

order to respond. An implicit invocation is of particular importance in the context of product

operations. Upon initiating the product addition operation, the user is afforded the opportunity to

input the initial inventory and the upper and lower limits of the warehouse. In the event that a product

is associated with upper and lower limits for the warehouse, the system will generate a listening object

to monitor it. Should the product in question exceed the monitoring range, the monitoring object will

return a message to the inventory management class, which will then label the product in red in order

to prompt the user. In addition to the inventory management module, modules for return and exchange,

processing lists, delivery notes, and other functions have been implemented using the implicit

invocation style. The use of implicit invocation greatly reduces the coupling between different

modules of the system, allowing for the completion of operations by simply calling the packaged

management class. This avoids the problem of non-synchronisation of data.

4. System Security and Confidentiality Design

(1) Security design of the data layer

As previously stated, the system selects the MySQL database for storage, utilising the integrated

64

and open architecture to store, extract, clean, and transform the source data in a timely manner, and

integrate it into the final data collection. The raw data is initially stored in different nodes of the data

lake according to its various types, and then awaits the ETL process of the data warehouse. For

example, the system’s suppliers, payment orders, and other upstream data for the enterprise are stored

on the same node, while inventory, product information, delivery orders, and other enterprise data are

stored on another node. The data warehouse can ensure the timely recovery of system data in the

event of malicious tampering with the MySQL database or damage to physical devices caused by

uncontrollable factors[5]. Furthermore, the distributed architecture of the data lake enables the

transmission of data from different nodes simultaneously, thereby enhancing the system’s security

and availability. Concurrently, we have opted to segregate the applied data for read and write

operations in order to preclude external modifications to high-value information within the data

warehouse. During the course of the system’s daily operation, the user's reading request will be

responded to first in the data warehouse. In the event that the requested data is not available in the

data warehouse, a query will be issued to the database. Conversely, the user’s writing operation can

only be carried out in the database. Following this, the data warehouse will update the data

independently. This approach not only enhances the system’s performance but also guarantees the

security and confidentiality of high-value data.

(2) Security design of the transmission layer

The system employs the use of HTTPS for the purpose of encrypted data transmission at the data

transmission layer. Firstly, the Hypertext Transfer Protocol (HTTP) encrypts the plain text

information. Secondly, the Transport Layer Security (TLS) / Secure Sockets Layer (SSL) protocol

establishes the connection between the client and the server for the transmission of information. In

order to prevent the third party from launching a data replay attack after obtaining the bag, a time

stamp is added to the header of the package. Once the accepted time interval and the sending time

interval exceeds 30 seconds, the request is considered invalid. This approach ensures that even a third

party attempting to grab the package has only 30s of effective time, which not only protects against

data replay attacks but also effectively limits the crawling of system data. Furthermore, given that the

system’s payment form and receipt list involve financial revenue and expenditure, we utilize digital

signature technology to incorporate an MD5 information summary at the backend of the message.

This serves to prevent any malicious alterations to user data that may occur after interception and the

subsequent crawling of private information, such as phone numbers and bank card numbers. In the

case of transmissions that do not involve sensitive information, the more efficient and faster UDP

protocol is employed for communication and transmission, particularly in instances where graphic

information is involved. This approach has the potential to significantly enhance system performance

and reduce resource overhead.

(3) Safety design of the application layer

In the event that the system is confronted with the necessity of user registration and login, the

initial encryption is performed using the AES symmetric encryption algorithm. This is then followed

by the encryption of the encrypted password with Bcrypt, which is subsequently stored in the database.

Upon authentication of the user, the same procedure is followed, with the hash value in the database

being compared to verify the user’s identity. In addition to identity authentication, the system employs

a range of other security measures at the application layer, including graphic verification codes,

mobile phone SMS verification, role permission control and other methods[6]. In the system,

permissions are opened according to the groups of different roles in order to prevent the occurrence

of erroneous operations on the data. For instance, the warehouse administrator is granted access to

permissions pertaining to product, inventory management, purchase orders, return orders, and

delivery notes, which are pertinent to their role. In contrast, the system administrator is granted access

to all permissions, enabling them to make adjustments to the business operations. Upon successful

65

login, the server returns a token to the client, which is then stored in the Redis cache server as a key-

value pair along with the user ID. The expiration time is also set to prevent security issues that may

arise from prolonged login sessions.

5. Conclusion

In the context of the information management system of SMEs with numerous roles and intricate

functional modules, the system can be divided through the application of analysis and design methods

related to software architecture, which significantly enhances the efficiency of software development

and the stability of the system. In light of the current development trend, cloud native edge computing

is a promising field worthy of further investigation, particularly in light of the rapid advancement of

the field of artificial intelligence, which renders the integration of edge computing platforms with

artificial intelligence a more viable proposition. In addition, the security and privacy of cloud native

edge applications, which are distributed widely and heterogeneous in their resource management, will

also face new challenges.

References

[1] Zhang Linshan. Design and implementation of enterprise Engineering Archives Information Management System

based on cloud computing [J]. Sme Management and Technology, 2023, (15): 141-143.

[2] Li Chunwei. Research and design of enterprise group archives management system based on microservice architecture

[J]. Archives, 2023 (04): 95-97.

[3] Wang Yubin. Research and implementation of Bank OLAP System based on Data Lake [D]. East China Normal

University, 2022.

[4] Li Fengwen, Zhou Lanying, Zhang Yifan. Overall analysis and analysis of software testing and software security [J].

Digital technology and applications, 2023, 41(09):225-227.

[5] Zeng Deze, Chen Yuhao, Gu Lin, Li Yuepeng. Cloud-native edge computing: Exploration and Outlook [J]. Journal of

the Internet of Things, 2021, 5 (02): 7-17.

[6] Jun W, Nikolay A, Yuan J G, et al. Database system for managing 20,000 20-inch PMTs at JUNO [J]. Nuclear Science

and Techniques, 2022, 33(3).

66

