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Abstract: Protein, the material basis of all living organisms and the primary carrier of life 

activities, plays a pivotal role in regulating various physiological functions. Composed of 

specific amino acid sequences, proteins can fold into distinct structures, enabling them to 

perform diverse functions such as biocatalysis, metabolic regulation, immune defense, 

transport, and storage. The design of novel proteins with targeted biological functions is a 

central task in protein engineering, with broad applications in synthetic biology and drug 

research. This paper provides a comprehensive overview of the recent advancements in 

deep learning-assisted protein design research. It primarily introduces related language 

models and generative models, and discusses the associated research and existing 

challenges from both sequence and structural perspectives. Finally, it offers a forward-

looking perspective on the future development of deep learning-assisted protein design 

research. 

1. Introduction 

In the early 1990s, Chen and his colleagues [1] pioneered the approach of Directed Evolution for 

the creation of new and improved enzymes. As the focus on High-throughput screening has 

increased, the equipment and detection instruments used for high-throughput drug screening have 

seen significant advancements [2-3]. However, due to the vast sequence space, functional mutations 

need to be screened from thousands of proteins. This process still requires a lengthy screening cycle, 

substantial manpower, and the unavoidable and non-standardizable operational errors between 

personnel. The continuous progress in high-throughput sequencing technologies has provided 

unprecedented data on natural sequence diversity. Therefore, how to circumvent the long research 

and development cycle and more effectively explore the secrets of protein sequence evolution has 

become a research direction of interest for many researchers. 

Advancements in high-performance computing devices have enabled deep learning models to 

process vast amounts of data. In recent years, a plethora of deep learning models have been 

developed in the fields of natural language processing and computer vision, leveraging massive 

datasets [4-6]. The evolution of these technologies has significantly propelled the progress of 

artificial intelligence. Similarly, interdisciplinary researchers have started utilizing deep learning 

methods to model extensive biological datasets, thereby advancing biology. Deep learning, a crucial 

research branch in machine learning, can be implemented using various architectures. Each layer in 
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deep learning gradually extracts features and passes them to the subsequent layer. By processing the 

input of each layer, higher-order features in the data are extracted. The backpropagation algorithm 

is employed to modify the internal parameters, thereby discovering complex structures in large 

datasets. Deep learning can be categorized into supervised and unsupervised learning, depending on 

whether the input data is labeled. Deep learning can transform complex and voluminous 

unstructured data into abstract and high-level representations through neural networks. The 

advantage is that features can be reused, and as the number of layers increases, more abstract 

features can be obtained. Thus, deep learning exhibits greater power and flexibility. 

2. Models based on data learning methods 

The objective of protein design is to create amino acid sequences that can fold into a specific 

structure and perform a particular function. With the exponential increase in protein sequence data, 

traditional methods have become inadequate for protein sequence generation. Although machine 

learning methods have made significant strides in the field of protein design, early work primarily 

focused on training discriminative models to guide protein design, which still presents many 

challenges. Generative models can address some of the issues inherent in existing machine learning 

models and hold substantial research and application potential in the field of protein sequence 

design. Currently, the abundance of protein sequences in databases provides ample data for training 

a protein language model. Our experiments demonstrate that language models can be applied to a 

variety of protein understanding and design tasks, and significant progress has been made in this 

area. Optimization in the protein sequence space is extremely challenging due to the large, discrete, 

and unstructured nature of the search space. Generative modeling of protein design aims to model 

the data distribution, with the key being to understand and control the biophysical properties learned 

by the model to generate new samples with properties similar to those on which the model was 

trained. 

2.1. Generative Language Models 

Over the course of several decades, Natural Language Processing (NLP) technology has evolved 

to the point where it can autonomously learn from a vast amount of unlabeled texts. This capability 

allows it to effectively capture textual information, and it has been extensively applied in various 

fields such as question answering, machine translation, sentiment analysis, and speech recognition. 

It has also been demonstrated that it is feasible to transfer the models and techniques associated 

with NLP to study the function of protein sequences with a large volume of data. In recent years, 

pre-trained language models have been increasingly utilized in protein engineering to enhance our 

understanding and interpretation of the functional information conveyed by protein sequences. 

Large language models have the capacity to learn diverse information from sequences, 

demonstrating robustness and generalizability. As illustrated in Table 1, protein language models 

tailored for various tasks typically necessitate extensive data for training. The ESM-1b[7], a high-

capacity Transformer language model, assimilates biological properties from 86 billion amino acids 

across 250 million protein sequences. It can discern the secondary and spatial structures of proteins, 

aligning with organizational principles from physicochemical properties to long-range homology. 

ProGen[8], a protein generation language model, harnesses roughly 280 million protein sequences 

to produce evolutionarily diverse sequences through unsupervised generation, categorized by 

classification and keyword labels. Elnaggar[9] et al. developed two autoregressive language models 

and two autoencoder models trained on 80 billion amino acids from 200 million protein sequences, 

alongside ProtTrans, a language model trained on 393 billion amino acids from 2.1 billion protein 

sequences. These unsupervised language models have been shown to capture fundamental 
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biophysical characteristics of proteins, underscoring the benefits of scaling up language models 

with more extensive data support. The UniRep[10] model accurately predicts the stability of both 

native and newly designed proteins by modeling unlabeled amino acid sequences and distilling 

essential protein features into statistically sound representations grounded in semantics, structure, 

evolution, and biophysics. Transfer learning leverages a vast corpus of unlabeled protein sequences 

for pre-training, extracting general protein features and representations, which are then fine-tuned 

using a limited set of labeled data to tailor the model for specific downstream tasks. The TAPE[11] 

model assesses the embedding efficacy of pre-trained language models across five tasks, including 

structure prediction, remote homology detection, and protein engineering, revealing that no single 

model excels in all areas. Pre-trained language models, when applied to extensive and varied 

protein sequence databases, can predict protein function from experimental measurements without 

additional supervision and are readily deployable for a spectrum of protein comprehension and 

design endeavors. Despite many protein language models capturing the general context of protein 

sequences, the vast protein landscape remains incomplete, posing ongoing challenges for numerous 

specific proteins in development. 

2.2. Deep Generative Models 

Employing deep generative models to assimilate evolutionary traits from established functional 

protein sequences enables the generation of innovative protein sequences. This approach facilitates 

the exploration of previously untapped functional sequence diversity. Consequently, it diminishes 

the necessity to empirically test an extensive array of non-functional protein sequence variants, 

thereby optimizing the efficiency of protein engineering endeavors. 

Deep generative models are adept at learning the joint probability distribution of sample data, 

capturing the essence of data distribution, addressing hidden variable samples, and synthesizing 

new samples that reflect the characteristics of the training data. Anand et al.[12] introduced an 

innovative method for the generation and reconstruction of 3D structures using deep generative 

models, employing Generative Adversarial Networks (GANs) to create novel protein structures. 

This trained model also has the capability to predict the missing segments of damaged protein 

structures. Greener et al.[13] utilized Conditional Variational Autoencoders (CVAE) to generate 

protein sequences with specific desired properties, such as introducing potential copper and calcium 

binding sites into proteins that typically do not bind metals. Shin et al. [14] developed an 

autoregressive generative model that leverages the information inherent in natural sequences to 

comprehend the constraints on amino acid positions without the need for sequence alignment. This 

model employs autoregressive likelihood to craft and design the complementarity-determining 

regions of antibodies. Repecka et al.[15] crafted a novel approach based on self-attention 

mechanisms. 

Our variant of the generative adversarial network, ProteinGAN, directly assimilates the 

evolutionary relationships and the diversity of natural protein sequences from the intricate 

multidimensional space of amino acid sequences, generating a plethora of new sequence variants 

that retain natural physical properties. Xian et al.[16] proposed a conditional generative model to 

address the scarcity of labeled training data, merging the strengths of VAE and GAN to discern the 

edge feature distribution of unlabeled images via an unconditional discriminator. Furthermore, we 

demonstrate the interpretability of the learned features by reconverting them into pixel space. 

3. Models based on data types 

Deep learning utilizes statistical methods to construct models that mirror the complexities of the 

real world, harnessing the power of extensive datasets. In bioinformatics, particularly in protein 
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sequence generation research, deep learning has demonstrated its distinctive worth and potential. 

Technologies for designing protein sequences with deep learning are primarily categorized into two 

strategies: sequence-based design [17] and structure-based design[18]. 

3.1. Sequence-based design models 

Sequence-based design methods are centered on the direct generation of proteins’ primary 

structures—their amino acid sequences. These methods utilize deep neural networks to analyze and 

learn from vast datasets of known protein sequences, thereby discerning the intrinsic rules and 

patterns that govern sequence relationships. Through this sophisticated learning process, the models 

can navigate and interpolate within a meticulously crafted latent space, enabling the generation of 

novel protein sequences. 

Biswas et al.[19] have mastered the art of learning natural latent representations by mining the 

vast landscape of protein sequences, utilizing a mere 24 functionally analyzed mutant sequences to 

craft an accurate virtual fitness landscape. Riesselman et al.[20], tapping into the latest strides in 

natural language processing and speech synthesis, have forged a generative deep neural network 

with an autoregressive model for biological sequences. This model, built on a residual causal 

dilation convolutional neural network architecture, adeptly captures functional constraints without 

depending on explicit alignment structures. Ding et al.[21] harnessed the distribution of family 

sequences within latent space to decode the protein fitness landscape, offering predictions on 

protein mutation stability and underscoring the pivotal role of stability in protein evolution. Their 

work reveals that points sharing similar adaptive landscapes cluster near the latent space sequence 

distribution, enabling the generation of new variant sequences via the VAE model decoder. 

Hawkins-Hooker et al.[22] engineered distinct VAE models for both unaligned and aligned 

sequences, demonstrating that those trained on multiple sequence alignment data more convincingly 

replicate the statistical nuances of structural and functional constraints that have been preserved 

throughout evolutionary history. Russ et al.[23] delineate a methodology to infer protein-specifying 

constraints solely from evolutionary sequence data, enabling the design and synthesis of gene 

libraries and their subsequent in vivo activity assessment through quantitative complementation 

analysis. These sequence-based statistical models prove to be robust tools, adequately specifying 

proteins and unlocking a vast expanse of functional sequences. 

3.2. Structure-based design models 

Structure-based design is predicated on the three-dimensional architecture of proteins. This 

method employs deep learning models to decipher the intricate interplay between amino acid 

sequences and their resultant spatial conformations. By modeling these relationships, scientists are 

able to engineer new protein structures that are theoretically robust and may also manifest 

unprecedented functionalities. 

In 2013, De et al. posited that coevolution plays a crucial role in evolution, often leading to 

coordinated changes among regulatory proteins that help sustain the integrity of ecological and 

molecular networks. Computational methods grounded in coevolutionary principles have become 

instrumental in analyzing and predicting protein structure, function, and interactions. In 2015, 

Braun et al. combined evolutionary insights with iterative sampling strategies to enhance the 

accuracy of protein structure predictions. The prediction of protein residue contacts, as improved by 

Adhikari et al. in 2018 using two-level deep convolutional neural networks, provides invaluable 

insights for protein structure prediction, allowing for the simultaneous prediction of all contacts 

from a protein’s comprehensive input information. 

The CASP (Critical Assessment of Protein Structure Prediction) competition, convened by the 
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protein structure prediction scientific community, serves as a benchmark for the field, with the 

winners’ level reflecting the pinnacle of global structure prediction capabilities. In 2019, Li et al. 

utilized a deep residual neural network to merge multiple original co-evolutionary features for 

contact map prediction in CASP13, demonstrating the robustness of the end-to-end training pipeline, 

attributed to sensitive MSA construction and sophisticated co-evolutionary feature integration 

strategies. AlphaFold emerged as a standout in CASP14 in 2020, with nearly two-thirds of its 

predictions achieving medium to low resolution experimental accuracy, nearly resolving the 

challenge of single-domain protein fold prediction. Subsequently, a research team led by David 

Baker introduced RoseTTAFold, a tool whose performance rivals that of AlphaFold. In 2021, Li et 

al. advanced the prediction of protein inter-residue contacts and distances by synergizing 

complementary coevolution features with deep residual networks in CASP14, indicating its 

potential to provide reliable distance metrics for ab initio protein folding. 

4. Conclusions 

The expansive compatibility of protein language models, coupled with the targeted data 

modeling by generative models, has significantly expedited the exploration of novel proteins. 

Leveraging the power of big data and deep learning, researchers are able to diminish reliance on 

domain-specific knowledge, bypass non-critical constraints, and delve into the discovery of 

potential new protein sequences that bear resemblance to actual proteins. While large and varied 

datasets of protein sequences are replete with information, there remains considerable potential for 

deep learning techniques to more precisely distill structural details into sequence data. Currently, 

the triumph of many models is heavily reliant on the availability of extensive homologous 

sequences. Consequently, datasets with limited samples present an ongoing challenge and an area 

ripe for future research and development 
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