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Abstract: This paper aims to solve the problem of determining the adaptive region in gravity 

aided navigation system. In order to achieve this goal, a SVM-based multi-classification 

method is proposed to determine the adaptive region. First, the data is divided into three 

dimensions and the applicability of the regions is determined based on the standard deviation. 

Secondly, the Kmeans clustering model and Gaussian mixed clustering model are 

established for comparison and analysis, and the optimal number of regions is 5. By 

observing and comparing the regions divided by the two methods, it is found that the regions 

divided by the Kmeans method are not continuous and relatively discrete, while the standard 

deviation of each region of the Gaussian mixed model is better than that of the Kmeans 

method. The standard deviations of the five regions divided by the Gaussian method are 

17.12, 24.34, 26.28, 13.39, and 21.08, respectively. The corresponding regions are labeled 

1-5. Zones 2, 3, and 5 are adaptation zones. 

1. Introduction 

In a gravity-assisted navigation system, in order to ensure the reliability and accuracy of navigation, 

it is necessary to select suitable underwater navigation areas, which are called "adaptation zones". 

Selecting the adaptive zones is a key step, but one of the most challenging problems is how to 

determine these adaptive zones. Before selecting an adaptation area, it is necessary to interpolate and 

encrypt the gravity datum of the studied sea area, the most basic of which is the gravity anomaly 

datum [1-3].  

Gravity anomalies refer to the uneven distribution of material density inside the Earth, resulting in 

a deviation between the actual observed gravity value of the Earth and the theoretical normal gravity 

value. After excluding the influence of various interfering factors, the change in gravity caused only 

by the uneven distribution of the density of the earth's matter is called the gravity anomaly. On Earth, 

the underground density distribution in different regions causes changes in the gravitational field, 

which can be detected and recorded using gravity measurements [4]. 

In gravity-assisted navigation, observing changes in gravity anomalies is important for selecting 

an adaptation zone. If the gravity anomaly changes significantly in an area, then the navigation system 
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can achieve high-precision positioning in that area. Conversely, if the gravity anomaly in an area 

changes little, then the navigation system's positioning accuracy may not be too high [5, 6]. 

Because the distribution of gravity anomaly features varies from region to region, it is critical to 

build a classification model that can predict the adaptation region. These models can help determine 

where the navigation system can achieve high precision positioning and where it may face poor 

positioning accuracy. The selection of suitable area and gravity anomaly analysis is an important step 

to ensure the navigation accuracy of underwater vehicles. 

This paper intends to solve the following problems. By refining the benchmark map, reasonably 

dividing regions for demonstration, and completing the adaptation calibration (label Y) of each region. 

2. Research Methods 

(1) First, perform 3D data visualization on the reference data A of gravity anomaly and check the 

variation area of gravity anomaly through observation. 

(2) Secondly, define the criteria for judging the significant change of gravity anomaly. Considering 

that we need to find the area with significant change of gravity anomaly, we take the standard 

deviation of the change of gravity anomaly in this area as the judging condition, which can perfectly 

show the difference between individuals and groups. 

(3) It is necessary to reasonably divide regions according to regional gravity anomaly changes, 

and complete the adaptation calibration of each region (label Y). It is obvious that this is a problem 

of unsupervised learning (clustering). It is necessary to build a clustering model to solve the region 

division problem. 

3. Results and Analysis 

3.1 Divide data into regions reasonably and complete the adaptation calibration of each region 

3.1.1 Problem preparation model 

(1) Define the gravity anomaly change 

First, we need to define what a gravitational anomaly is. Gravity anomaly refers to the change of 

gravity caused only by the uneven distribution of the density of the earth's matter after excluding the 

influence of various interference factors. We can think that the magnitude of the standard deviation 

of the gravity anomaly represents the significance of the change of the gravity anomaly. Specifically, 

we can define: 
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Where m is a threshold, such as 20, indicating a change in gravity anomalies. N Represents the 

amount of gravity anomaly data in the region, and represents the average value of gravity anomalies 

in the region x . 

(2) Data display 

We can obtain the latitude and longitude and gravity outliers of the given location. 

A 3D graph is used to visualize these data so that we can observe the variation of gravity anomalies 

at each location. 
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(3) Determine the significant variation of gravity anomalies in each region 

First, calculate the standard deviation of gravity anomaly change in this region, and then judge 

whether significant gravity anomaly change occurs according to the threshold value. 

3.2 Model Establishment 

3.2.1 Kmeans model building 

Find a partition scheme of K clusters, so that the loss function corresponding to the clustering 

result is minimum. K-means clustering is the most basic and commonly used clustering algorithm. 

Its basic idea is that through iterative finding, the loss function can be defined as the sum of error 

squares of each sample distance from the center point of the cluster to which it belongs: 
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Where represents the first sample, is the cluster to which it belongs, represents the center point 

corresponding to the cluster, is the total number of samples ix i ic ix
ic M . 

3.2.2 Establishment of Gaussian mixture clustering model 

(1) Gaussian distribution probability density function: 

The probability density function of Gaussian distribution is expressed as: 
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Where, is the observed data point, is the mean of the Gaussian distribution, is the covariance matrix, 

and is the data dimension x   d . 

(2) Probability density function of mixed Gaussian distribution: 

The probability density function of GMM is expressed as a linear combination of multiple 

Gaussian distributions: 
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Where, is the number of mixed components, is the mixing coefficient of each mixed component, 

and is the mean and covariance matrix of each mixed component K i i i . 

(3)Expectation step of EM algorithm: 

In step E, calculate the posterior probability (responsibility) that the data point belongs to the fourth 

mixed component: x i  
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Where, indicating the posterior probability that the data point belongs to the fourth mixed 

component, at the first iteration,, and are the mixing coefficient, mean, and covariance matrix of the 

first mixed component.
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(4) Maximization steps in EM algorithm: 

In the M step, update the parameters of the mixed components to maximize the likelihood function: 
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Where, is the total number of data points, is the data point, is the posterior probability calculated 

in step E, and is the new mixing coefficient, mean and covariance matrix for the first mixing 

component N jx ( )t

jw ( 1)t
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3.3 Model solution and comparison 

3.3.1 Data display 

First of all, the data presentation is carried out by reading the data from the Gravity anomaly 

reference data A file, normalizing the gravity anomaly value, scaling it to between 0 and 1, so that it 

can be used as the basis for color mapping. 

Then create the color map and finally create a 3D scatterplot. In it, longitude and latitude determine 

the position of the data points, while the gravity outlier determines the height of the points. Set the 

color mapping so that the color of the scatter is based on the gravity outlier. This way, different data 

points will be rendered in different colors, representing the relative sizes of their gravitational outliers. 

Figure 1 shows the gravity outlier data, with red indicating large gravity outliers and blue 

indicating small gravity outliers. From the figure, it can be simply analyzed that the gravity anomaly 

fluctuates significantly, with four distinct peaks and five sub-peaks. 

 

Figure 1: Three-dimensional scatterplot of gravity anomalies 
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3.3.2 KMeans model solution 

(1) Randomly select K centers, denoted as
(0) (0) (0)

1 2, ,..., k  
 

(2) Define the loss function:

2

1
( , ) min || ||

i

M

i ci
J c x 


 

 

(3) Let t=0,1,2,... Is the number of iterative steps, repeat the following process to know 

convergence: J  

(3.1) For each sample, assign it to the nearest center ix
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(3.2) For each class center k, recalculate the center of the class 
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(a) Select the number of clusters K: First of all, regionalization into a class has the best effect 

according to several experiments. 5k   

(b) Initialize cluster center point: Randomly select K data points as the initial cluster center point, 

or use other initialization methods. These points will become the center of each cluster. 

(c) Assign data points to clusters: For each data point, calculate the distance between it and the 

center point of each cluster, usually using Euclidean distance or another distance metric. The data 

point will be assigned to the closest cluster. 

(d) Update cluster center points: Calculate the average of all the data points in each cluster, and 

then use these averages as the new cluster center points. 

(e) Repeat allocation and update: Repeat steps 3 and 4 until the cluster center point no longer 

changes significantly, or a predetermined number of iterations is reached. 

 

Figure 2: Result of kmeans region partitioning 
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Figure 3: Region division results of kmeans method with improved parameters 

It can be seen from the Figures 2 and 3 that the regions separated by conventional kmeans 

classification are relatively discrete, and the standard deviation of gravity outliers is not large, and 

most of them are concentrated in 5-8. In this paper, the parameters of kmean are adjusted, and it is 

found that the effect is not very good through the experiment again. However, after several 

experiments, it is determined that the best effect is to divide the region into five categories. 

3.3.2 Gaussian mixture clustering model solution 

GMM steps are as follows.  

(1) Initialization: Randomly initialize the mean, covariance matrix and mixing coefficient of each 

Gaussian distribution. These parameters will be updated in subsequent iterations. 

(2) Expectation Step (Step E): In this step, the probability (posterior probability) that it comes from 

each Gaussian distribution is calculated for each data point. This can be calculated using the Bayesian 

formula, which is the observed value of a given data point, calculating the probability that it belongs 

to each Gaussian distribution. 

(3) Maximization step (Step M): In this step, the parameters of each Gaussian distribution are 

updated based on the posterior probability calculated in step E. Specifically, update the mean, 

covariance matrix, and mixing coefficients for each component to maximize the likelihood function. 

(4) Iteration: Repeat step E and step M until convergence, usually when the parameter change is 

less than a certain threshold or reaches the maximum number of iterations. 

(5) Result: After convergence, GMM produces a mixed model that fits the data, including 

parameters for each component. These components can be used to identify subgroups in the data or 

used to generate new data points. 
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Figure 4: Clustering results of Gaussian mixture model 

Previous experiments have determined that it is best to divide regions into five categories. The 

following work in this paper continues to divide regions into five categories. It can be seen from 

Figure 4 that the standard deviation of gravity of regions 2.3.5 reaches 20, label 2.3.5 is all adaptive 

regions, and the divided regions are relatively continuous and integral, which is also convenient for 

the navigation work of underwater vehicles in the background of the problem. In this paper, the labels 

after clustering are stored. The following is part of the results (Table 1). 

Table 1: Cluster labels are displayed 

Longitude Latitude Gravitational outliers Tag y 

115.0083 11.0068 59.3 1 

115.025 11.0068 58.1 1 

115.0417 11.0068 52.5 1 

115.0583 11.0068 45.5 1 

115.075 10.9904 36 1 

115.1583 10.9904 12.9 1 

115.2917 10.9904 22.2 1 

115.3083 10.9904 20.6 1 

115.325 10.9577 16.7 1 

115.3417 10.9577 11.4 1 

115.3583 10.9577 6.4 1 

115.3083 10.794 18.2 1 

115.325 10.794 12.6 1 

115.325 9.7937 12 1 

115.6417 9.7937 8.9 1 

115.5583 9.0045 31.8 1 

115.2917 10.2533 74.2 2 

115.3083 10.2533 75.5 2 

115.325 10.2533 74.6 2 

115.2417 10.204 79.3 2 

115.2583 10.204 86.3 2 

115.275 10.204 90.1 2 

115.2417 10.1877 78.1 2 

115.2583 10.1877 83.6 2 

115.275 10.1877 86 2 

115.625 10.04 57.2 2 

115.6083 9.9579 67.7 2 

115.475 9.9415 84.5 2 
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115.6083 9.9415 71 2 

116.7083 9.0045 0.6 2 

116.725 9.0045 8.9 2 

116.2083 11.0068 41.4 3 

116.225 11.0068 48.4 3 

116.2417 11.0068 58.1 3 

116.375 10.9904 83.7 3 

116.3917 10.9904 81.4 3 

116.4083 10.9904 79.9 3 

116.975 10.9904 48.2 3 

116.3417 10.9577 91.2 3 

116.375 10.9577 85.1 3 

116.4083 10.9577 80 3 

116.8583 10.9413 55.3 3 

116.7083 10.9249 56.1 3 

116.725 10.9249 55.5 3 

116.9417 10.9249 39.4 3 

116.9917 10.9086 20.2 3 

116.0917 10.8922 38.1 3 

116.5917 10.5155 65.6 3 

115.675 10.4664 76.5 3 

116.8417 10.4664 45.4 3 

116.5417 10.2696 27.5 3 

116.0583 11.0068 14.7 4 

116.075 11.0068 26.7 4 

116.0917 11.0068 35.6 4 

116.125 10.9577 32.3 4 

116.1417 10.9577 32.8 4 

116.1083 10.9413 31 4 

116.0583 10.9086 17.6 4 

116.0583 10.8922 22.3 4 

116.425 10.8104 18.8 4 

116.525 10.0892 1.3 4 

116.6083 10.0892 0.4 4 

116.0917 9.7609 4.9 4 

117.0083 9.6623 7.2 4 

116.9583 9.6459 10.8 4 

117.0083 9.6459 7.1 4 

117.0083 9.0045 17.6 4 

115.4417 11.0068 13.5 5 

115.4583 11.0068 17.5 5 

115.475 11.0068 19.6 5 

115.4917 11.0068 - 19 5 

115.5083 11.0068 17.1 5 

116.225 10.2533 26.9 5 

116.2417 10.2533 29.5 5 

115.8417 10.2205 27 5 

115.9083 10.2205 28.1 5 

116.0583 10.1056 25.4 5 

116.0417 10.0564 25.8 5 

116.0583 10.04 28.6 5 

116.025 9.8922 33.4 5 
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4. Conclusions 

In this paper, the adaptive region of gravity aided navigation system is predicted by the 

establishment of SVM multi-classification and mixed Gaussian clustering model. The results show 

that the Gaussian mixed cluster model is superior to the Kmeans cluster model in both continuity and 

standard deviation of regional division. Through the application of the model, the adaptive region can 

be predicted effectively, which provides an important reference for the navigation accuracy of the 

gravity aided navigation system in different regions. In addition, the research method of this paper 

can also provide reference for the solution of similar problems. 
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