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Abstract: Accurate prediction of road congestion is imperative for improving road utilization, 

thereby reducing economic losses and enhancing traffic management efficiency. Employing 

the XGBoost algorithm, this study integrates both temporal and spatial dimensions into the 

prediction of road congestion. Analysis of road congestion box plots across various 

coordinates and directions reveals significant disparities in traffic congestion coefficients, 

indicating a close relationship between the spatial dimension and traffic congestion 

conditions. Additionally, discernible variations in congestion coefficients between weekdays 

and non-workdays highlight a crucial association between traffic congestion conditions and 

time. The model incorporates spatial and temporal data to predict and simulate real Chicago 

road traffic conditions. Comparative analysis between actual and predicted values 

demonstrates the model's alignment with real data, attesting to its excellent predictive 

efficiency. Finally, elucidation of the influence of each variable on the traffic congestion 

prediction model is achieved through the feature importance ranking. 

1. Introduction 

In recent years, with the acceleration of urbanization, the problem of urban traffic congestion has 

become more and more serious, seriously affecting people's travel efficiency and quality of life. 

Therefore, the use of big data mining technology to predict traffic congestion and propose 

improvement measures is a current topic of concern in the field of traffic management [1]. With the 

complex factors of spatial and temporal variations of traffic flow, there is a need to find an effective 

big data mining method to predict traffic congestion, so as to improve the utilization rate of traffic 

roads. 

At present, in the research of traffic congestion prediction, our scholars Tang Zhikang et al. design 

a traffic congestion prediction model based on the Bagging integrated learning method, which 

considers the influence of various environmental factors on the traffic condition and improves the 

comprehensiveness of the prediction [2]; GU Li-qiong et al. construct a MM-SVR model based on 

the congestion indicator to improve the support vector machine model for road congestion prediction, 

which greatly improves the predictive accuracy [3]. 

This paper employs the XGBoost algorithm to systematically analyze road congestion, considering 
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both spatial and temporal dimensions to forecast future traffic conditions. Spatially, discernible 

disparities in road congestion across various coordinates and directions are evident, while temporally, 

significant differences in traffic congestion coefficients between weekdays and non-weekdays are 

observed. Subsequently, the XGBoost algorithm is applied to assess feature importance, identifying 

key variables influencing traffic congestion prediction accuracy. Model simulation and prediction 

indicate a strong alignment between actual and predicted values, with prediction accuracy assessed 

by calculating the Mean Absolute Error. Results demonstrate the effectiveness of the prediction 

method in accurately forecasting road conditions, providing valuable insights for urban transportation 

management and construction in China.  

2. Principles of the methodology 

XGBoost is a model based on GBDT, and its model structure is similar to GBDT in that it is based 

on a decision tree, and integrates weak classifiers into strong classifiers through continuous iteration 

(e.g., the Figure 1 shown). [4] On the one hand, compared to GBDT which only uses first-order 

derivatives, the XGBoost algorithm carries out second-order derivatives to make the loss function 

more accurate and adds a regular term in the objective function, Ω(𝑓𝑘) which is used to control the 

complexity of the model to avoid overfitting; on the other hand, the XGBoost algorithm is an 

advanced version of the gradient boosting decision tree, which grows the decision tree by constant 

feature splitting, and in the process of learning the decision tree, it fits the error between the actual 

value and the predicted value of the model to improve the accuracy of prediction as shown in Figure 

1 and Figure 2.[5] 

 

Figure 1: XGBoost algorithm integration flow (Left) 

Figure 1: Flowchart of the gradient boosting decision tree model (Right) 

2.1 Construct the objective function 

The XGBoost algorithm is an additive model consisting of𝑘 an additive model consisting of 

individual decision tree models, and the prediction accuracy improves as the number of model 

iterations increases. Assuming that the first𝑘 iteration of the tree model to be trained is 𝑓𝑘(𝑥) The 

final prediction for the first𝑖 the final prediction for the first sample is: 

                    (1) 

Eq:𝑦�̂�
(𝑘)

 --Previous𝑘  round model prediction value;𝑦�̂�
(𝑘−1)

--- previous𝑘 − 1 round of model 

predictions;𝑓𝑘(𝑥𝑖)--th𝑘 decision tree model. 
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To optimize the objective function, Taylor series, regularized expansion is used to combine the 

primary and secondary function coefficients and k iterations are performed to obtain the formula for 

the final prediction: 

         (2) 

Eq: 𝑦�̂�
(𝑘−1)

--Previous 𝑘 − 1  round model prediction value; 𝑙(𝑦𝑖 , 𝑦�̂�
〈𝑘−1〉

) --sample 𝑥 𝑖  of the 

training error;𝑔𝑖 , ℎ𝑖--pre-training𝑘 − 1 Residuals at tree;Ω(𝑓𝑘)--the 𝑘 regular term of the tree.where 

the Ω(𝑓𝑘) The canonical term indicates the complexity of the structure of this model, the smaller the 

result, the more accurate the prediction. 

3. Result 

3.1 Data sources 

The data in this paper is from Chicago Traffic Tracker-Historical Congestion Estimates by Segment 

Specific parameters are as follows: Row_id--a unique identifier for each record. Time--20 minutes of 

time for each measurement. x--Coordinates of the east-west midpoint of the roadway. y-- Coordinates 

of the north-south midpoint of the roadway. Direction--the direction of travel of the road. For example: 

East Boulevard (EB) means "east" direction of travel, North Boulevard (NB) means "north" direction 

of travel, South Boulevard (SB) means "south" direction of travel, West Boulevard (WB) means 

"west" direction of travel, and Northeast (NE) means "west" direction of travel. South Boulevard (SB) 

means "southbound" direction of travel, West Boulevard (WB) means "westbound" direction of travel, 

Northeast (NE) means "northeast" direction of travel, and Northwest (NW) for "northeast" direction 

of travel. Northwest (NW) means the "northwest" direction of travel, Southeast (SE) means the 

"southeast" direction of travel, and Southwest (SW) means the "southwest" direction of travel. 

Southeast (SE) means "Southeast" direction of travel and Southwest (SW) means "Southwest" 

direction of travel. Congestion--the hourly level of congestion on roads, normalized to a range of 0 to 

100. 

3.2 Data processing 

The Chicago traffic data for a specific road section is systematically organized. Utilizing a 20-

minute time interval, the statistics detailing the road conditions for this section are presented in the 

table. Specifically, the data spans from April 1 to September 30 of a given year. Table 1 displays both 

the congestion factor distribution for this road, while Figure 3 provides a visual representation of the 

congestion factor distribution. 

Table 1: Roadway congestion data within the period April 1-September 30  

row_id Time x y direction congestion 

0 04-01 00:00:00 0 0 EB 70 

1 04-01 00:00:00 0 0 NB 49 

... ... ... ... ... ... 

848833 09-30 11:40:00 2 3 SW 17 

848834 09-30 11:40:00 2 3 WB 24 
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Figure 2: Histogram of road congestion factor 

Figure 3 reveals a roughly normal distribution of images, suggesting that the congestion factor is 

predominantly concentrated within the range of 40-50. Due to space constraints, only pertinent data 

for the eastbound route on April 1 of a specific year is selected for display in Table 2.  

Table 2: Data for eastbound travel routes on April 1, 00:00:00 

row_id time x y direction congestion 

0 04-01 0 0 EB 70 

3 04-01 0 1 EB 18 

... ... ... ... ... ... 

51 04-01 2 2 EB 42 

59 04-01 2 3 EB 39 

3.3 Spatial regularity 

Table 3 presents road condition data for all roads with different coordinates and directions on April 

1st. 

Table 3: Orientation of different road directions 

row_id x y 

0 0 0 

3 0 1 

... ... ... 

51 2 2 

59 2 3 

By studying congestion across various coordinates and directions in space, it becomes plausible to 

predict future congestion at the nearest point in a given direction. For instance, congestion at (0-1-

EB) may exhibit correlation with future congestion at (1-1-EB). Recognizing the bidirectional nature 

of this correlation, a reverse prediction can be attempted as well: congestion at (1-1-EB) could be 

correlated with past congestion at (0-1-EB). Figure 4, depicted below, illustrates the roadways at 65 

different coordinates and directions. 

4



 

Figure 3: Schematic diagram of different coordinates and directions 

As shown in Figure 4, a total of 12 coordinate points and 8 directions ('EB,' 'NB,' 'SB,' 'WB,' 'NE,' 

'SW,' 'NW,' 'SE') form 65 distinct road combinations involving various geographic locations and 

directions. Each geographic location is associated with a minimum of 3 and a maximum of 8 

directions. The dataset comprises 65 road combinations, offering a substantial volume of data for 

model training. 

To illustrate, Figure 5 showcases a block diagram representing the congestion situation for roads 

with different directions at geographic coordinates x=0, y=0 on April 8. 

 
(a)                                (b) 

Figure 4: Distribution of road congestion factor in different directions on April 8 (x=0, y=0) 

In Figure 5, the analysis highlights the median of the boxplot as indicative of the concentration 

trend within the dataset. Specifically, considering the medians, (0-0-SB) exhibits the highest 

congestion factor but is situated in the upper portion of the box center, while (0-0-NB) has the lowest 

median but is positioned in the lower part of the box center. Regarding the median's position relative 

to the box, (0-0-SB) and (0-0-EB) have upper-half medians, signifying a left-skewed distribution 

where most congestion coefficients are smaller than the median. Conversely, (0-0-NB) displays a 

lower-half median, indicating a right-skewed distribution where most congestion coefficients surpass 

the median. Outlier data, beyond the upper and lower extents of the boxes in the boxplots, can be 

identified by observing outliers in different directional boxplots. Overall, notable differences in 

congestion among these three directions suggest that road congestion is not concentrated in the 
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directional dimension. 

As an illustrative example, on April 8, at the geographic location x=2, y=1, statistical data from 

various road directions are utilized to construct a congestion box plot, presented in Figure 6. 

 
(a)                              (b) 

Figure 5: Distribution of roadway congestion factors in different directions on April 8 (x=2, y=1) 

In Figure 6, the analysis indicates that the median of the boxplot serves as a key indicator of the 

concentration trend within the dataset. Specifically, among the medians, (2-1-EB) displays the highest 

congestion factor, while (2-1-NE) exhibits the lowest median. Considering the median's position 

relative to the box, (2-1-NE), (2-1-EB), and (2-1-WE) have medians in the middle of the box, 

suggesting a roughly normal distribution of the congestion factor for these directions. This implies 

that most congestion factors are approximately equal to the median. On the other hand, the medians 

of (2-1-SB) and (2-1-NB) are in the upper half of the box, indicating left-skewed distributions, where 

most congestion coefficients are smaller than the median. Conversely, the median of (2-1-SW) is in 

the lower half of the box, signaling a right-skewed distribution, with most congestion coefficients 

surpassing the median. Outlier data beyond the upper and lower extents of the boxes in the boxplots 

are identified, notably more prevalent in (2-1-NW), as observed through careful examination of the 

boxplots in different directions. Overall, marked differences in congestion across various directions 

underscore the complexity of the congestion prediction space. 

3.4 Time regularity 

Given the intricacies associated with traffic forecasting, an exploration of congestion patterns is 

undertaken at the temporal level. Time series data for congestion coefficients on weekdays (April 8) 

and non-weekdays (April 13) are selected and presented in Figures 7 and 8, respectively. 

 

Figure 6: Time series plot for weekday (April 8) (Left)    

Figure 7: Time Series Plot of Non-Working Days (April 17) (Right) 
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Figures 7 and 8 reveal a shared trend where congestion factors on both April 8 and April 13 begin 

to rise around 7:00, reaching a peak around 20:00 before gradually declining. Notably, on weekdays, 

the congestion coefficients peak during 8:00-9:00, 12:00-13:00, and 18:00-19:00, aligning with 

typical morning and evening rush hours. Conversely, on non-weekdays, the congestion coefficients 

peak during 19:00-20:00, corresponding to the evening peak for weekend trips. This observation 

underscores the efficacy of the congestion coefficient index proposed in this study, affirming its 

ability to accurately reflect the actual road congestion conditions. 

3.5 Model predictions 

The acquired road state variables constitute the sample set for training a model using the XGBoost 

algorithm. Subsequently, the trained model is applied to predict road states and trends for the 

following day. For efficient model training and evaluation, 80% of the total data is randomly 

designated as the training set, leaving the remaining 20% as the test set for data prediction. The time 

range for the test set is selected randomly. In this paper, to illustrate the process, only 100 data points 

are chosen for demonstration, as depicted in Figure 9. The predictive accuracy of the model is 

assessed by computing the Mean Absolute Error (MAE) between the predicted and actual values.  

 

Figure 8: Comparison of predicted and real data 

Figure 9 presents a comparative illustration between the test data and the actual data, focusing on 

the initial 100 data points to address data redundancy. Through careful comparison and analysis of 

the image, it is observed that the predictions generated by the model utilized in this study align well 

with the actual data. Simulation calculations yield a Mean Absolute Error (MAE) value of 6.1665, 

indicating a high level of prediction accuracy. 

3.6 Feature Importance Ranking 

The XGBoost algorithm, a widely employed additive model for big data mining, consists of 

decision tree models. In contrast to "black box" algorithms like neural networks and GBDT, the 

XGBoost algorithm, utilized in this study, is distinctive for its foundation on the Congestion index. 

This allows for the prioritization of variables, rendering an interpretable analysis that specifically 

delineates the contribution of feature variables to road congestion prediction. The established 

XGBoost algorithm prediction model in this paper considers the congestion coefficient as the 

dependent variable, incorporating 14 feature variables such as weekdays, non-workdays, and different 

coordinates and directions. By computing the congestion coefficient for each feature variable, a 

ranking of variables is obtained, elucidating their respective contributions. This facilitates the 

determination of variable importance in relation to their impact on road congestion. High-importance 

feature variables are retained, while those with lower contributions are excluded, thereby simplifying 
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the model, enhancing prediction accuracy, and improving efficiency. 

The paper conducts a comprehensive analysis of road congestion at spatial and temporal levels, 

comparing the characteristics of different roads. The resultant order of importance for these 

characteristics is depicted in Figure 10. 

 

Figure 9: Importance ranking of features 

From Figure 10, it can be seen that the importance of road direction and location is higher than 

that of time, which reflects that the prediction of road congestion mainly depends on the spatial 

distribution of roads, but also has a certain connection with time. 

4. Conclusion 

This paper employs the XGBoost algorithm prediction model to construct an evaluation model for 

assessing road congestion conditions. Specifically, it establishes a road congestion coefficient index 

based on historical data, enabling the prediction of road congestion conditions at specific times. The 

distinctive aspect of this study lies in its exploration and analysis of both temporal and spatial 

dimensions of road conditions. It identifies variables with high correlation to the prediction model, 

aiming to enhance prediction accuracy. Results from prediction experiments demonstrate the model's 

ability to accurately anticipate future road congestion, providing a basis for reasonable analysis. This, 

in turn, offers valuable insights for transportation departments to monitor real-time traffic conditions 

and implement timely traffic control measures. 

In the current landscape of road prediction, the trend towards comprehensive consideration of 

various factors influencing road congestion is evident. This paper exemplifies this trend by 

incorporating spatial and temporal dimensions, among other factors, to improve the rationality of road 

congestion prediction. However, it is acknowledged that real-world complexities, such as different 

car models, speeds, environments, and road grades, may impact road congestion. Future research 

endeavors can gradually integrate these factors to further enhance the accuracy of prediction results. 
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